Design of molecular inhibitors against the NuoC protein of Mycobacterium tuberculosis
Abstract
One of the most serious medical conditions is tuberculosis (TB). In Mycobacterium tuberculosis (Mtb), the NADH-quinone oxidoreductase subunit C (NuoC) protein is a member of the NADH dehydrogenase family and is essential to the electron transport chain, ATP generation, and energy production. One possible pharmacological target for finding inhibitors is the Nuoc protein. Computational approaches are used to identify the 3D structural characteristics of the Nuoc protein, and several validation methods are used to verify the results. Using several ligand databases, virtual screening tests surrounding the active site were carried out to find drug-like molecules. The study found that the amino acid residues that are important in drug-target interactions are ARG98, ARG75 (basic), ASP99, ASP189, ASP98 (acidic), LEU101, LEU194 (nonpolar neutral), THR180 (polar neutral), GLU177 (polar neutral), TYR181 (polar neutral), PRO102, PRO192 (nonpolar neutral), and HIS191 (basic). The findings demonstrate the ligand molecules’ drug-like ability to inhibit NuoC proteins. The structural data may be used to develop novel therapeutic scaffolds for the treatment of tuberculosis (TB), in conjunction with information on the active site and the chosen ligand molecules.
Keywords:
Molecular Dynamics, NuoC protein, Virtual Screening, MM/GBSA calculations, ADME properties, Homology modelingDOI
https://doi.org/10.25004/IJPSDR.2024.160302References
Mejbel FAH, Aljanaby IAJ, Al Hadrawi KK, Aljanaby AAJ. Pulmonary Tuberculosis Risks and Challenges. In the proceedings of the 2023 E3S Web Conference. 2023, pp. 381 (April). Available from: doi.org/10.1051/e3sconf/202338101101.
Lee BS, Pethe K. Telacebec: An Investigational Antibacterial for the Treatment of Tuberculosis (TB). Expert Opin. Investig. Drugs. 2022;31(2):139–144. Available from: doi.org/10.1080/13543784.2022.2030309.
Sandhu G, Tuberculosis: Current Situation, Challenges and Overview of Its Control Programs in India. J. Glob. Infect. Dis. 2011;3(2):143–150. Available from: doi.org/10.4103/0974-777X.81691.
Villar-Hernández R, Ghodousi A, Konstantynovska O, Duarte R, Lange C, Raviglione M. Tuberculosis: Current Challenges and Beyond. Breathe. 2023;19(1):3–7. Available from: doi.org/10.1183/20734735.0166-2022.
Ifijen IH, Atoe B, Ekun RO, Ighodaro A, Odiachi IJ. Treatments of Mycobacterium Tuberculosis and Toxoplasma Gondii with Selenium Nanoparticles. Bionanoscience 2023; 13(1):249–277. Available from: doi.org/10.1007/s12668-023-01059-4.
World Malaria Report 2023; 2023. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
Global Tuberculosis ReporT 2022; 2022. Available from: http://apps.who.int/bookorders.
Wang PH, Lin SY, Liou HH, Chen CC, Shu CC, Lee CY, Tsai MK, Yu CJ. Protective Effect of BCG and Neutrophil-to-Lymphocyte Ratio on Latent Tuberculosis in End Stage Renal Disease. Infect. Dis. Ther. 2023;12(7):1907–1920. Available from: doi.org/10.1007/s40121-023-00839-5.
Korotetskaya M, Baikuzina P, Apt A. Inability of the BCG Vaccine to Protect Mice of the H2f Haplotype at Advanced Stages of TB Infection Is Associated with Defective CD4+ T-Cell Activation in Spleen. Tuberculosis 2023;143:102429. Available from: doi.org/10.1016/j.tube.2023.102429.
Wu C, Yi H, Hu Y, Luo D, Tang Z, Wen X, Zhang Y, Tang M, Zhang L, Wu S, Chen M. Effects of Second-Line Anti-Tuberculosis Drugs on the Intestinal Microbiota of Patients with Rifampicin-Resistant Tuberculosis. Front. Cell. Infect. Microbiol. 2023;13 (April):1–12. Available from: doi.org/10.3389/fcimb.2023.1127916.
Arushothy R, Jamaludin FN, Samsudin N, Yong KL, Hashim R. Characterization of Non-Vaccine Type Streptococcus Pneumoniae in Malaysia. Int. J. Infect. Dis. 2023;130:S88–S89. Available from: doi.org/10.1016/j.ijid.2023.04.220.
Van Schalkwyk M, Bekker A, Decloedt E, Wang J, Theron GB, Cotton MF, Eke AC, Cressey TR, Shapiro DE, Bacon K, Knowles K, George K, Browning R, Chakhtoura N, Rungruengthanakit K, Wiesner L, Capparelli EV, Stek AM, Mirochnick M, Best BM. Pharmacokinetics and Safety of First-Line Tuberculosis Drugs Rifampin, Isoniazid, Ethambutol, and Pyrazinamide during Pregnancy and Postpartum: Results from IMPAACT P1026s. Antimicrob. Agents Chemother. 2023;67(11):1–18. Available from: doi.org/10.1128/aac.00737-23.
Sathiyamoorthi S, Pentapati SSK, Vullanki SS, Avula VCR, Aravindakshan R. A Case of Delusional Disorder With Abuse of Isoniazid, Rifampicin, Pyrazinamide, and Ethambutol, the First-Line Anti-tuberculosis Therapy Drugs in India. Cureus. 2023 Mar 29;15(3):e36893. Available from: doi: 10.7759/cureus.36893.
Palomino, J. C, Martin, A.Drug Resistance Mechanisms in Mycobacterium Tuberculosis. Antibiotics. 2014;3(3):317–340. Available from: doi.org/10.3390/antibiotics3030317.
Ramanathan K, Antognini D, Combes A, Paden M, Zakhary B, Ogino M, MacLaren G, Brodie D, Shekar K. Planning and provision of ECMO services for severe ARDS during the COVID-19 pandemic and other outbreaks of emerging infectious diseases. Lancet Respir Med. 2020 May;8(5):518-526. Available from: doi: 10.1016/S2213-2600(20)30121-1.
Merker M, Rasigade JP, Barbier M, Cox H, Feuerriegel S, Kohl TA, Shitikov E, Klaos K, Gaudin C, Antoine R, Diel R, Borrell S, Gagneux S, Nikolayevskyy V, Andres S, Crudu V, Supply P, Niemann S, Wirth T. Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade toward extensively drug resistant tuberculosis. Nat Commun. 2022 Aug 30;13(1):5105. Available from: doi: 10.1038/s41467-022-32455-1.
Chen, Y, Jiang Q, Peierdun M, Takiff H. E, Gao Q. The Mutational Signatures of Poor Treatment Outcomes on the Drug-Susceptible Mycobacterium Tuberculosis Genome. Elife 2023; 12: 1–13. Available from: doi.org/10.7554/eLife.84815.
Turon G, Hlozek J, Woodland JG, Kumar A, Chibale K, Duran-Frigola M. First fully-automated AI/ML virtual screening cascade implemented at a drug discovery centre in Africa. Nat Commun. 2023 Sep 15;14(1):5736. Available from: doi: 10.1038/s41467-023-41512-2.
Upadhayay A, Ling J, Pal D, Xie Y, Ping FF, Kumar A. Resistance-Proof Antimicrobial Drug Discovery to Combat Global Antimicrobial Resistance Threat. Drug Resist. Updat. 2023;66(September2022):100890. Available from: doi.org/10.1016/j.drup.2022.100890.
Cook GM, Hards K, Dunn E, Heikal A, Nakatani Y, Greening C, Crick DC, Fontes FL, Pethe K, Hasenoehrl E, Berney M. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions. Tuberc. Tuber. Bacillus Second Ed. 2017;5(3): 295–316. Available from: https://doi.org/10.1128/9781555819569.ch14.
Anand P, Akhter Y. A Review on Enzyme Complexes of Electron Transport Chain from Mycobacterium Tuberculosis as Promising Drug Targets. Int. J. Biol. Macromol. 2022; 212 (May):474–494. Available from: doi.org/10.1016/j.ijbiomac.2022.05.124.
Walker JE. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys. 1992 Aug;25(3):253-324. Available from: doi: 10.1017/s003358350000425x.
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium Tuberculosis Cells Exposed to Nitrosative Stress. ACS Omega. 2022;7(4):3470–3482. Available from: doi.org/10.1021/acsomega.1c05923.
Płocińska R, Wasik K, Płociński P, Lechowicz E, Antczak M, Błaszczyk E, Dziadek B, Słomka M, Rumijowska-Galewicz A, Dziadek J. The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Mycobacterium Tuberculosis via Protein–Protein Interactions. Front. Cell. Infect. Microbiol. 2022;12 (June):1–18. Available from: doi.org/10.3389/fcimb.2022.909507.
Kelam LM, Wani MA, Dhaked DK. An update on ATP synthase inhibitors: A unique target for drug development in M. tuberculosis. Prog Biophys Mol Biol. 2023 Jul-Aug;180-181:87-104. Available from: doi: 10.1016/j.pbiomolbio.2023.04.009.
Goedken ER, Argiriadi MA, Dietrich JD, Petros AM, Krishnan N, Panchal SC, Qiu W, Wu H, Zhu H, Adams AM, Bodelle PM, Goguen L, Richardson PL, Slivka PF, Srikumaran M, Upadhyay AK, Wu B, Judge RA, Vasudevan A, Gopalakrishnan SM, Cox PB, Stoll VS, Sun C. Identification and Structure-Based Drug Design of Cell-Active Inhibitors of Interleukin 17A at a Novel C-Terminal Site. Sci. Rep. 2022;12(1):1–12. Available from: doi.org/10.1038/s41598-022-18760-1.
Yu W, Mackerell AD. Computer-Aided Drug Design Methods. Methods Mol. Biol. 2017; 1520:85–106. Available from: doi.org/10.1007/978-1-4939-6634-9_5.
Almihyawi RA. H, Naman ZT, Al-Hasani HMH, Muhseen ZT, Zhang S, Chen G. Integrated Computer-Aided Drug Design and Biophysical Simulation Approaches to Determine Natural Anti-Bacterial Compounds for Acinetobacter Baumannii. Sci. Rep. 2022;12 (1):1–14. Available from: doi.org/10.1038/s41598-022-10364-z.
Stefanović C, Hager-Mair FF, Breslmayr E, López-Guzmán A, Lim C, Blaukopf M, Kosma P, Oostenbrink C, Ludwig R, Schäffer C. Molecular modelling and site-directed mutagenesis provide insight into saccharide pyruvylation by the Paenibacillus alvei CsaB enzyme. Sci Rep. 2023 Aug 17;13(1):13394. Available from: doi: 10.1038/s41598-023-40072-1.
Harrison C. Homology Model Allows Effective Virtual Screening. Nat. Rev. Drug Discov. 2011;10 (11): 816–816. Available from: doi.org/10.1038/nrd3597.
Gniado N, Krawczyk-Balska A, Mehta P, Miszta P, Filipek S. Protein Homology Modeling for Effective Drug Design. Methods Mol Biol. 2023;2627:329-337. Available from: doi: 10.1007/978-1-0716-2974-1_18.
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The Proteomics Server for in-Depth Protein Knowledge and Analysis. Nucleic Acids Res. 2003; 31 (13): 3784–3788. Available from: doi.org/10.1093/nar/gkg563..
UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res.2023 Jan 6;51(D1):D523-D531. Available from: doi: 10.1093/nar/gkac1052.
Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603. Available from: doi: 10.1093/nar/gks400.
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015 Jun;10(6):845-58. Available from: doi.org/10.1038/nprot.2015.053.
Drozdetskiy A, Cole C, Procter J, Barton GJ. JPred4: A Protein Secondary Structure Prediction Server. Nucleic Acids Res.2015;43(W1):W389–W394. Available from: doi.org/10.1093/nar/gkv332.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST : A New Generation of Protein Database Search Programs. 1997;25(17):3389–3402. Available from: doi.org/10.1093/nar/25.17.3389.
Li KB. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioinformatics. 2003 Aug 12;19(12):1585-6. Available from: doi: 10.1093/bioinformatics/btg192.
Sánchez R, Sali A. Evaluation of comparative protein structure modeling by MODELLER-3. Proteins. 1997;Suppl 1:50-8. Available from: doi:10.1002/(sici)1097-0134(1997)1+<50::aid-prot8>3.3.co;2-w.
Arab SS, Dantism A. EasyModel: a user-friendly web-based interface based on MODELLER. Sci Rep. 2023 Oct 11;13(1):17185. Available from: doi.org/10.1038/s41598-
Laskowski RA. PDBsum1: A Standalone Program for Generating PDBsum Analyses. Protein Sci. 2022; 31 (12): e4473. Available from: doi.org/10.1002/pro.4473.
Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963 Jul;7:95-9. Available from: doi.org/10.1016/S0022-2836(63)80023-6.
Feig M, Mirjalili V. Protein Structure Refinement via Molecular-Dynamics Simulations: What Works and What Does Not? Proteins Struct. Funct. Bioinforma. 2016; 84 (S1): 282–292. Available from: doi.org/10.1002/prot.24871.
Heo L, Feig M. PREFMD: A Web Server for Protein Structure Refinement via Molecular Dynamics Simulations. Bioinformatics 2018;34(6):1063–1065. Available from: doi.org/10.1093/bioinformatics/btx726.
Siu SWI, Pluhackova K, Böckmann RA, Optimization of the OPLS-AA Force Field for Long Hydrocarbons. J. Chem. Theory Comput. 2012; 8 (4):1459–1470. Available from: doi.org/10.1021/ct200908r.
Kneller GR. Comment on "Using quaternions to calculate RMSD" [J. Comp. Chem. 25, 1849 (2004)]. J Comput Chem. 2005 Nov 30;26(15):1660-2. Available from: doi.org/https://doi.org/10.1002/jcc.20296.
Wiederstein M, Sippl MJ. ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-Dimensional Structures of Proteins. Nucleic Acids Res. 2007; 35 (suppl_2): W407–W410. Available from: doi.org/10.1093/nar/gkm290.
Johansson MU, Zoete V, Michielin O, Guex N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics. 2012 Jul 23;13:173. Available from: doi.org/10.1186/1471-2105-13-173.
Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018 Jul 2;46(W1):W363-W367. Available from: doi.org/10.1093/nar/gky473.
Michael TN, Obagbuwa IC, Whata A, Madzima KA. Comparative Modeling and Comprehensive Binding Site Analysis of the South African Beta COVID-19 Variant’s Spike Protein Structure BT - Advanced AI and Internet of Health Things for Combating Pandemics; Lahby M, Pilloni V, Banerjee JS, Mahmud M, Eds.; Springer International Publishing: Cham, 2023;pp383–394. Available from: doi.org/10.1007/978-3-031-28631-5_18.
Reang J, Yadav V, Vinita, Majeed J, Sharma PC, Tonk RK, Sharma K. Informatics: Tools and Databases in Drug Discovery BT - CADD and Informatics in Drug Discovery; Rudrapal, M, Khan J, Eds.; Springer Nature Singapore: Singapore, 2023;pp 53–77. Available from: doi.org/10.1007/978-981-99-1316-9_3.
Halgren T. New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des. 2007 Feb;69(2):146-8. Available from: doi.org/10.1111/j.1747-0285.2007.00483.x.
Alzyoud L, Bryce RA, Al Sorkhy M, Atatreh N, Ghattas MA. Structure-based assessment and druggability classification of protein-protein interaction sites. Sci Rep. 2022 May 13;12(1):7975. Available from: doi.org/10.1038/s41598-022-12105-8.
Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006 Oct 19;49(21):6177-96. Available from: doi.org/10.1021/jm051256o.
Leit S, Greenwood J, Carriero S, Mondal S, Abel R, Ashwell M, Blanchette H, Boyles NA, Cartwright M, Collis A, Feng S, Ghanakota P, Harriman GC, Hosagrahara V, Kaila N, Kapeller R, Rafi SB, Romero DL, Tarantino PM, Timaniya J, Toms AV, Wester RT, Westlin W, Srivastava B, Miao W, Tummino P, McElwee JJ, Edmondson SD, Masse CE. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. J Med Chem. 2023 Aug 10;66(15):10473-10496. Available from: doi: 10.1021/acs.jmedchem.3c00600.
Tiwari V, Viswanath S. Identification of Potential Modulators of IFITM3 by In-Silico Modeling and Virtual Screening. Sci. Rep. 2022;12(1):1–11. Available from: doi.org/10.1038/s41598-022-20259-8.
Robertson MJ, Meyerowitz JG, Panova O, Borrelli K, Skiniotis G. Plasticity in ligand recognition at somatostatin receptors. Nat Struct Mol Biol. 2022 Mar;29(3):210-217. Erratum in: Nat Struct Mol Biol. 2022 Aug;29(8):841. Available from: doi: 10.1038/s41594-022-00727-5.
Agu PC, Afiukwa CA, Orji OU, Ezeh EM, Ofoke IH, Ogbu CO, Ugwuja EI, Aja PM. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci Rep. 2023 Aug 17;13(1):13398. Available from: doi: 10.1038/s41598-023-40160-2.
Athimoolam T, Devaraj Stephen L, Gunasekaran B, Krishnamurthi J. Synthesis, Characterization, Molecular Docking, and in Vitro Antidiabetic Activity Studies of New and Highly Selective Methoxy-Substituted Benzimidazole. J. Struct. Chem. 2023; 64 (11): 2063–2081. Available from: doi.org/10.1134/S0022476623110045.
Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and Ligand Preparation: Parameters, Protocols, and Influence on Virtual Screening Enrichments. J. Comput.Aided.Mol.Des. 2013;27(3):221-234. Available from: doi.org/10.1007/s10822-013-9644-8.
Giardina S. F, Werner DS, Pingle M, Feinberg PB, Foreman KW, Bergstrom DE, Arnold LD, Barany FN, Self-Assembling Dimeric Inhibitors of Human β Tryptase. J.Med.Chem. 2020;63(6):3004–3027. Available from: doi.org/10.1021/acs.jmedchem.9b01689.
Tamilvanan T, Hopper W. High-Throughput Virtual Screening and Docking Studies of Matrix Protein Vp40 of Ebola Virus. Bioinformation 2013; 9 (6): 286–292. Available from: doi.org/10.6026/97320630009286.
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE 3rd. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000Dec;33(12):889-97. Available from: doi.org/10.1021/ar000033j.
Ramírez-Salinas GL, García-Machorro J, Rojas-Hernández S, Campos-Rodríguez R, de Oca AC, Gomez MM, Luciano R, Zimic M, Correa-Basurto J. Bioinformatics design and experimental validation of influenza A virus multi-epitopes that induce neutralizing antibodies. Arch Virol. 2020 Apr;165(4):891-911. Available from: doi: 10.1007/s00705-020-04537-2.
Tavella D, Ouellette DR, Garofalo R, Zhu K, Xu J, Oloo EO, Negron C, Ihnat PM. A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model. PLoS One. 2022 Dec 29;17(12):e0279689. Available from: doi.org/10.1371/journal.pone.0279689.
Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J. Solvent Accessible Surface Area Approximations for Rapid and Accurate Protein Structure Prediction. J. Mol. Model. 2009; 15 (9):1093–1108. Available from: doi.org/10.1007/s00894-009-0454-9.
Alqahtani S. Improving on in-silico prediction of oral drug bioavailability. Expert Opin Drug Metab Toxicol. 2023Jul-Dec;19(10):665-670. Available from: doi: 10.1080/17425255.2023.2261366.
Panigrahi D, Mishra A, Sahu S. K. Pharmacophore Modelling, QSAR Study, Molecular Docking and Insilico ADME Prediction of 1,2,3-Triazole and Pyrazolopyridones as DprE1 Inhibitor Antitubercular Agents. SNAppl. Sci.2020;2(5):922. Available from: doi.org/10.1007/s42452-020-2638-y.
Ioakimidis L, Thoukydidis L, Mirza A, Naeem S, Reynisson J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. QSAR Comb. Sci.2008;27 (4):445–456. Available from: doi.org/10.1002/qsar.200730051.
Loganathan L, Sankar J, Rajendran K, Muthusamy K. Theoretical investigation on known renin inhibitors and generation of ligand-based pharmacophore models for hypertension treatment. J Biomol Struct Dyn. 2023 Oct 28:1-10. Available from: doi.org/10.1080/07391102.2023.2275186.
Cole DJ, Tirado-Rives J, Jorgensen WL. Molecular dynamics and Monte Carlo simulations for protein-ligand binding and inhibitor design. Biochim Biophys Acta. 2015 May;1850(5):966-971. Available from: doi: 10.1016/j.bbagen.2014.08.018.
Gupta P, Umesh P, Sanjeev S. Novel scaffolds identification against Mpro of SARS-CoV-2 using shape based screening and molecular simulation methods. Chemical Physics Impact. 2024;8:100496. Available from: doi.org/10.1016/j.chphi.2024.100496.
Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM. PDBsum: Structural Summaries of PDB Entries. Protein Sci. 2018;27(1):129–134. Available from: doi.org/10.1002/pro.3289.
Shukla, Rohit, Timir T. Molecular dynamics simulation of protein and protein-ligand complexes. Computer-aided drug design. Singh, D.B. (eds) Springer, Singapore. (2020), pp. 133-161. In: Computer-Aided Drug Design. https://doi.org/10.1007/978-981-15-6815-2_7
Published


How to Cite
Issue
Section
Copyright (c) 2024 Hareesh Reddy Badepally, Lavanya Rumandla, Mounika Badineni, Ramesh Malikanti, Rajender Vadija, Kiran Kumar Mustyala, Vasavi M

This work is licensed under a Creative Commons Attribution 4.0 International License.