Natural Green Synthesis of Silver Nanoparticles Using Leaf Extract of Guazuma ulmifolia Lam. and Analysis of its Antimicrobial, Anti-inflammatory and Anticancer Activities

Authors

  • C Santhanakumar PG and Research Department of Botany, Government Arts College (Autonomous), Coimbatore , Tamil Nadu, India
  • A. Vanitha Department of Botany, Namakkal Kavignar Ramalingam Government Arts College for Women, Namakkal, Tamil Nadu, India
  • VC Saralabai PG and Research Department of Botany, Government Arts College (Autonomous), Coimbatore, Tamil Nadu, India
  • K Kalimuthu Department of Biotechnology, Dr. N.G.P. Arts & Science College (Autonomous), Dr. N.G.P. Nagar, Kalapatti, Coimbatore, Tamil Nadu. India

Abstract

Globally, silver nanoparticles (SNP) were created using a biologically activated green synthesis process that has raised substantial awareness of medical science and illness therapy. A new method of synthesising SNPs based on a bottom-up, "green" approach is described here Guazuma ulmifolia Lam. leaf aqueous extract in addition to assess their antibacterial, anti-inflammatory also anticancer in vitro properties. By using well diffusion method, the antibacterial activity possessed by nanoparticles against Staphylococcus aureus, Staphylococcus gallinarium, Bacillus subtilis, Pseudomonas stuberia, in addition to Escherichia coli was examined. Subsequently, these GUSNPs (Guazuma ulmifolia Silver Nanoparticles) were investigated for anticancer activity assessed by MTT assay utilizing HepG2 carcinoma cell line, and anti-inflammatory activity assessed by HRBC stabilization assay protein denaturation assays. In dosage of 10 μg/ml, the GUSNPs had the maximum antibacterial activity against the following bacteria: Staphylococcus aureus (7.1 mm), Staphylococcus gallinarium (5.2 mm), Bacillus subtilis (6.7 mm), Pseudomonas stuberia (6.3 mm), and Escherichia coli (4.7 mm), respectively. Membrane stabilization of HRBCs had a substantial anti-inflammatory activity (73.27±0.89%), whereas the GUSNPs had the best protection of protein denaturation (79.35±0.42%) at 1000 μg/ml. The best cytotoxicity activity of GUSNPs against HepG2 cell line was found in 500 μg/ml concentration with 24.32 percent of cell viability. The current study of GUSNPs has good antibacterial, anti-inflammatory, and anticancer activities.

Keywords:

Antibacterial, Anticancer, cytotoxicity activities, Guazuma ulmifolia, Protein denaturation

DOI

https://doi.org/10.25004/IJPSDR.2024.160509

References

Islam MA, Jacob MV, Antunes EA. critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. Journal of Environmental Management. 2021;281:111918. Doi: 10.1016/j.jenvman.2020.111918.

Beyene HD, Werkneh AA, Bezabh HK. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Mater Technology. 2017;13:18–23. Doi: 10.1016/j.susmat.2017.08.001.

Koduru JR, Kailasa SK, Bhamore JR, Kim KH, Dutta T, Vellingiri K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Advanced Colloid Interface Science. 2018;256:326–339. doi: 10.1016/j.cis.2018.03.001.

Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Science. 2020;27:2410–2419. doi: 10.1016/j.sjbs.2020.05.005.

Benedec D, Oniga I, Cuibus F, Sevastre, B, Stiufiuc G, Duma, M, et al. Origanum vulgare mediated green synthesis of biocompatible gold nanoparticles simultaneously possessing plasmonic, antioxidant and antimicrobial properties. International Journal of Nanomedicine. 2018;13:1041–1058. doi: 10.2147/IJN.S149819.

Ravindran J, Arumugasamy V, Baskaran A. Wound healing effect of silver nanoparticles from Tridax procumbens leaf extracts on Pangasius hypophthalmus. Wound Medicine journal. 2019;27:100170. doi.org/10.1016/j.wndm.2019.100170.

Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT. Plant extract synthesized nanoparticles: An ongoing source of novel biocompatible materials. Industrial Crops Production. 2015;70:356–373. DOI:10.1016/j.indcrop.2015.03.015.

Asghar MA, Yousuf RI, Shoaib MH, Asghar MA. Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. International Journal of Biological Macromolecules. 2020;160:934–943. doi: 10.1016/j.ijbiomac.2020.05.197.

Ali MS, Anuradha V, Yogananth N, Krishnakumar S. Heart and liver regeneration in zebrafish using silver nanoparticles synthesized from Turbinaria conoides–In vivo. Biocatalytic and Agricultural Biotechnology. 2019;17:104–109.

Jini D, Sharmila S. Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater Today Process. 2020;22:432–438. doi.org/10.1016/j.matpr.2019.07.672.

Anbukkarasi M, Thomas PA, Teresa PA, Anand T, Geraldine P. Comparison of the efficacy of a Tabernaemontana divaricata extract and of biosynthesized silver nanoparticles in preventing cataract formation in an in vivo system of selenite-induced cataractogenesis. Biocatalytic and Agricultural Biotechnology. 2020;23:101475. DOI:10.1016/j.bcab.2019.101475.

Radwan RA, El-Sherif YA, Salama MM. A novel biochemical study of anti-ageing potential of Eucalyptus camaldulensis bark waste standardized extract and silver nanoparticles. Colloids Surface B Biointerface. 2020;191:111004. doi: 10.1016/j.colsurfb.2020.111004.

Jiang H, Manolache S, Wong ACL, Denes FS. Plasma‐enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Pollution Science. 2004;93(3):1411-1422. DOI:10.1002/app.20561.

Becker RO. Silver ions in the treatment of local infections. Metal-based drugs. 1999;6(4-5):311-14. doi: 10.1155/MBD.1999.311.

Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiological Review. 2003;27(2-3):341-53. doi: 10.1016/S0168-6445(03)00047-0.

Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosystems and Engineering. 2009;32(1):79-84. doi: 10.1007/s00449-008-0224-6.

Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicinal Cellulose Long. 2017;2020:1-13. doi: 10.1155/2017/8416763.

Harirforoosh S, Asghar W, Jamali F. Adverse Effects of Nonsteroidal Anti-inflammatory Drugs: An Update of Gastrointestinal, Cardiovascular and Renal Complications. Journal of Pharmacy and Pharmaceutical Science. 2013;16(5):821-847. doi: 10.18433/j3vw2f.

Adegbola O, Ajayi GO. Screening for gestational diabetes mellitus in Nigerian pregnant women using fifty-gram oral glucose challenge test. West African Journal of Medicine. 2008;27:139–143.

Balogh J, Victor III D, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. Journal of hepatic Cardio. 2016;41-53. doi: 10.2147/JHC.S61146.

Al Muqarrabun L MR, Ahmat N. Medicinal uses, phytochemistry and pharmacology of family Sterculiaceae: a review. Euro. Journal of Medicinal Chemistry. 2015;92:514-530. doi: 10.1016/j.ejmech.2015.01.026.

Navarro V, Villarreal ML, Rojas G, Lozoya X. Antimicrobial evaluation of some plants used in Mexican traditional medicine for the treatment of infectious diseases. Journal of Ethnopharmacy. 1996;53(3):143–147. doi: 10.1016/0378-8741(96)01429-8.

Assis RQ, Andrade KL, Gomes Batista LE, de Oliveira Rios A, Dias DR, Ndiaye EA, et al. Characterization of mutamba (Guazuma ulmifolia LAM.) fruit flour and development of bread. Biocatalytic and Agricultural Biotechnology. 2019;19:101120. Doi: 10.1016/J.BCAB.2019.101120.

dos Santos JM, Alfredo TM, Antunes KA, da Cunha J, ... de Picoli Souza K. Guazuma ulmifolia Lam. Decreases oxidative stress in blood cells and prevents doxorubicin-induced cardiotoxicity. Oxida. Medical and Cellular Long. 2018;2018:1–16. doi: 10.1155/2018/2935051.

Hor M, Heinrich M, Rimpler H. Proanthocyanidin polymers with antisecretory activity and proanthocyanidin oligomers from Guazuma ulmifolia bark. Phytochemistry. 1996;42(1):109–119. doi.org/10.1016/0031-9422(95)00855-1.

Hor M, Rimpler H, Heinrich M. Inhibition of Intestinal Chloride Secretion by Proanthocyanidins from Guazuma ulmifolia. Planta and Medical. 1995;61(03):208–212. doi: 10.1055/s-2006-958057.

Subramaniam P, Nisha KJ, Vanitha A, Kiruthika ML, Sindhu P, Elesawy BH, et al. Synthesis of silver nanoparticles from wild and tissue cultured Ceropegia juncea plants and its antibacterial, anti-angiogenesis and cytotoxic activities. Applied Nanoscience. 2021;1-15. Doi: 10.1007/s13204-021-02092-z.

Sankar R, Maheswari R, Karthik S, Shivashangari KS, Ravikumar V. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Mater Science and Engineering. C. 2014;44:234-239. doi: 10.1016/j.msec.2014.08.030.

Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanyan RH. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Letters. 2007;61:1413–8. http://dx.doi.org/10.1016/j.matlet.2006.07.042.

Mizushima Y, Kobayashi M. Interaction of anti‐inflammatory drugs with serum proteins, especially with some biologically active proteins. Journal of Pharmacy and Pharmaceutical. 1968;20(3):169-173. doi: 10.1111/j.2042-7158.1968.tb09718.x.

Sakat S, Juvekar AR, Gambhire MN. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Inter. Journal of Pharmacy and Pharmaceutical Science. 2010;2(1):146-155. DOI:10.1055/s-0029-1234983.

Kumar V, Bhat ZA, Kumar D, Bohra P, Sheela S. In-vitro anti-inflammatory activity of leaf extracts of Basella alba linn. var. alba. Inter. Journal of Drug Development and Research. 2011;3(2):176-179.

Karthika V, Arumugam A, Gopinath K, Kaleeswarran P, Govindarajan M, Alharbi NS, et al. Guazuma ulmifolia bark-synthesized Ag, Au and Ag/Au alloy nanoparticles: Photocatalytic potential, DNA/protein interactions, anticancer activity and toxicity against 14 species of microbial pathogens. Journal of Photochemistry and Photobiology B: Bioscience. 2017;167:189-199. https://doi.org/10.1016/j.jphotobiol.2017.01.008.

El Domany BE, Tamer ME, Amr EA, Ahmed AF. Biosynthesis, Characterization, Antibacterial and Synergistic Effect of Silver Nanoparticles using Fusarium oxysporum. Journal of Pure Applied Micro-biology. 2017;11(3):1441-1446. https://doi.org/10.22207/JPAM.11.3.27.

Ahmed AA, Haider H, Mohammed M. Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turkey Journal of Bioscience. 2018;42:54-62. doi: 10.3906/biy-1710-2.

Costa Silva LP, Oliveira JP, Keijok WJ, da Silva AR, Aguiar AR, Guimarães MC, et al. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. International Journal of Nanoscience. 2017;12:6373-6381. doi: 10.2147/IJN.S137703.

Kajani A, Bordbar AK, Esfahani SHZ, Khosropour AR, Razmjou A. Green synthesis of anisotropic silver nanoparticles with potent anticancer activity using Taxus baccata extract. RSC Advances journal. 2014;4:61394-61403. DOI: 10.1039/C4RA08758E.

Zhang T, Gao J, Jin ZY, Xu XM, Chen HQ. Protective effects of polysaccharides from Lilium lancifolium on streptozotocin-induced diabetic mice. Inter J bio Macro. 2014;65:436-440. doi: 10.1016/j.ijbiomac.2014.01.063.

Niu LX, Li ZN, Li HJ, Zhang YL. Study on ultrasonic wave extraction of flavonoids from the bulb of Lilium lancifolium. Zhong yao cai= Zhongyaocai= Journal of Chin Medical and Mate, 2007;30(1):85-88.

You X, Xie C, Liu K, Gu Z. Isolation of non-starch polysaccharides from bulb of tiger lily (Lilium lancifolium Thunb.) with fermentation of Saccharomyces cerevisiae. Carbohydrate and Polymers. 2010;81(1):35-40. DOI: 10.1016/j.carbpol.2010.01.051.

Luo J, Li L, Kong L. Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chemistry. 2012;131(3):1056-1062. DOI:10.1016/j.foodchem.2011.09.112.

Langi Bhushan, Shah Chetan, Singh, Krishan Kant, Chaskar, Atul, et al. “Ionic liquid-induced synthesis of selenium nanoparticles,” Mater Research and Bullets. 2012;45:668.

Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S. Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract. Journal of molecular and Structure. 2018;1159:167-173. DOI: 10.1016/j.molstruc.2017.11.095.

Ingole AR, Thakar SR, Khati NT, Wankhade AV, Burghate DK. “Green synthesis of selenium nanoparticles under ambient condition”. Chalcogenide Letters. 2010; 7:485–489.

Pyrzynska K, Sentkowska A. “Biosynthesis of selenium nanoparticles using plant extracts,” Journal of Nanostructure and Chemistry. 2021;1-14. https://doi.org/10.1007/s40097-021-00435-4.

Ahmad K, Warsito B, Hidayat JW, Khan S, Ahmed N, Calvin EJ, et al. Green synthesis of silver nanoparticles and degradation of AZO-dyes using Cestrum diurnum plant extract, and antimicrobial activities of AgNP’s. Journal of Bioremedial and Environmetal Science. 2023;2(2):78-88. DOI: 10.14710/jbes.2023.19246.

Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanoscience. 2015;16(1):53-53. DOI: 10.1155/2015/720654.

Krishnaraj C, Jagan E, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan NJCSBB. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surface B Biointerface. 2010;76(1):50-56. doi: 10.1016/j.colsurfb.2009.10.008.

Balamanikandan T, Balaji S, Pandiarajan J. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial and antifungal activity. World Applied Science of Journal. 2015;33:939-43. DOI: 10.5829/idosi.wasj.2015.33.06.9525.

Kim SH, Lee HS, Ryu DS, Choi SJ, Lee DS. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean Journal of Microbiology and Biotechnology. 2011;39(1):77-85.

de Jesús Ruíz-Baltazar Á, Reyes-López SY, Larrañaga D, Estévez M, Pérez R. Green synthesis of silver nanoparticles using a Melissa officinalis leaf extract with antibacterial properties. Results Physiology. 2017;7:2639-43. Doi: 10.1016/j.rinp.2017.07.044.

Pazos-Ortiz E, Roque-Ruiz JH, Hinojos-Márquez EA, López-Esparza J, Donohué-Cornejo A, Cuevas-González JC, et al. Dose-dependent antimicrobial activity of silver nanoparticles on polycaprolactone fibers against Gram-positive and Gram-negative Bacteria. Journal of Nanomaters. 2017;2017(1). DOI:10.1155/2017/4752314.

López-Esparza J, Espinosa-Cristóbal LF, Donohue-Cornejo A, Reyes-López SY. Antimicrobial activity of silver nanoparticles in polycaprolactone nanofibers against gram-positive and gram-negative bacteria. Industrial Engineering and Chemical Research. 2016;55(49):12532-12538.

Ilavarasan R, Mallika M, Venkataraman S. “Anti-inflammatory and free radical scavenging activity of Ricinus communis root extract,” Journal of Ethnopharmaceutical. 2006;103:478-480. doi: 10.1016/j.jep.2005.07.029.

Saini AK, Goyal R, Gauttam VK, Kalia AN. “Evaluation of anti-inflammatory potential of Ricinus communis Linn. leaves extracts and its flavonoids content in Wistar rats,” Journal of Chemistry and Pharmaceutical Research. 2010;2:690-695. DOI:10.1186/s13104-017-3001-2.

JerunNisha KM, Vanitha A, Kiruthika ML, Viswanathan P, Kalimuthu K. Biosynthesis of Silver and Copper Nanoparticles Using Cadaba fruticosa (L.) Druce and its Biological Applications. Asian Pacific Journal of Health Sciences. 2021;8:1-12. DOI: https://doi.org/10.21276/apjhs.2021.8.3.12.

Rajendran Vadivu, Lakshmi KS. In vitro and in vivo anti inflammatory activity of leaves of Symplocos cochinchinensis (Lour) Moore ssp Laurina. Bangladesh Journal of Pharmacology. 2008;3:121-124. DOI: https://doi.org/10.3329/bjp.v3i2.956.

SathiyaSheela D, Viswanathan P, Kalimuthu K, Vanitha A. Facile synthesis of silver nanoparticles, anti-inflammatory, antibacterial and photocatalytic activities using Pogostemon speciosus Benth. An endemic medicinal plant. Journal of Water and Environmental Nanotechnology. 2022;7:306-316. https://doi.org/10.22090/jwent.2022.03.006.

Subramaniam P, Vanitha A, Kalimuthu K, SathiyaSheela D, ShanthiPriya E. Phytosynthesis of copper nanoparticles using wild Ceropegia juncea and its therapeutic activities. Research Journal of Agricultural Sciences. 2022;13:1024–1031.

Kingslin A, Kalimuthu K, Kiruthika ML, Khalifa AS, Nhat PT, Brindhadevi K. Synthesis, characterization and biological potential of silver nanoparticles using Enteromorpha prolifera algal extract. Applied Nanoscience. 2022;1-14. DOI: 10.1007/s13204-021-02105-x.

Taur DJ, Waghmare MG, Bandal RS, Patil RY. “Antinociceptive activity of Ricinus communis L. leaves,” Asian Pacific Journal of Tropical Biomedicine. 2011;1:139-141. doi: 10.1016/S2221-1691(11)60012-9.

Chou CT. The Anti-inflammatory effect of an extract of Tripterygium wilfordii Hook F on adjuvant-induced paw oedema in rats and inflammatory mediators release. Phytother Research. 1997;11(2):152–154. DOI:10.1002/(SICI)1099-1573(199703)11:2<152::AID-PTR45>3.0.CO;2-L.

Yesmin S, Paul A, Naz T, Rahman AA, Akhter SF, Wahed MI, Emran TB, Siddiqui SA. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinlical Phytoscience. 2020;6(1):1-10. DOI: https://doi.org/10.1186/s40816-020-00207-7.

Kumar V, Bhat ZA, Kumar D, Bohra P, Sheela S. In-vitro anti-inflammatory activity of leaf extracts of Basella alba linn. Var. alba. International Journal of Drug Development and Research. 2011;3(2):176–179.

Gogoi R, Sarma N, Pandey SK, Lal M. Phytochemical constituents and pharmacological potential of Solanum khasianum CB Clarke. extracts: Special emphasis on its skin whitening, anti-diabetic, acetylcholinesterase and genotoxic activities. Trends Phytochemistry and Research. 2021;5(2):47–61. DOI:10.30495/TPR.2021.1917249.1190.

Pungle R, Tambe A, More A, Kharat A. Anti-inflammatory and antioxidant potentiality of Solanum xanthocarpum. Africal Journal of Biotechnology. 2018;17(37):1188–1195. DOI:10.5897/AJB2018.16560.

Gupta S. In-Vitro anti-inflammatory activity of S. xanthocarpum and A. officinarum herb by human red blood cell membrane stabilization method. Journal of Drug Delivery and Therapeutics. 2019;9(3):663–666. DOI: https://doi.org/10.22270/jddt.v9i3-s.2948.

Kavitha R, Rigley CM, Salomy SR, Piramila BH, Rose AF. In vitro analysis of antidiabetic and anti-inflammatory activities of selected medicinal plants. Journal of Pharmceutical Science and Research. 2021;13(5):259–270.

Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong BL, Medina-Cruz D. Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotechnology Represents. 2022;34:e00714. DOI:10.1016/j.btre.2022.e00714.

Virmani I, Sasi C, Priyadarshini E, Kumar R, Sharma KS, Singh PG, Meena R. Comparative anticancer potential of biologically and chemically synthesized gold nanoparticles. Journal of Cluster Science. 2020;31:867–76. DOI:10.1007/s10876-019-01695-5.

Barabadi H, Vahidi H, Mahjoub AM, Kosar Z, Kamali DK, Ponmurugan K, et al. Emerging antineoplastic gold nanomaterials for cervical cancer therapeutics: a systematic review. Journal of Cluster Science. 2020;31:1173–1184. doi: 10.2147/IJN.S240293.

Alahmad A, Feldhoff A, Bigall NC, Rusch P, Scheper T. Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities. Nanomaters. 2021;11:487. https://doi.org/10.3390/nano11020487.

Patra JK, Das G, Shin HS. Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. International Journal of Nanomedicine. 2019;14:6679–90. DOI https://doi.org/10.2147/IJN.S212614.

Hashemi Z, Mizwari ZM, Mohammadi-Aghdam S, Mortazavi- Derazkola S, Ebrahimzadeh MA. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract: optimization and assessment of photocatalytic degradation of methyl orange and there in vitro antibacterial and anticancer activity. Arabian Journal of Chemistry. 2022;15:103525. https://doi.org/10.1016/j.arabjc.2021.103525.

Almeida PDO, Boleti APA, Rüdiger AL, Lourenço GA, Veiga Junior VF, Lima, ES. Anti-inflammatory activity of triterpenes isolated from Protium paniculatum oil-resins. Evidence-Based Complement Alter Medicine. 2015;10:293768. doi: 10.1155/2015/293768.

Ferreira RGS, Silva Júnior WF, Veiga Junior VF, Lima AAN, Lima ES. Physicochemical characterization and biological activities of the triterpenic mixture α, β-amyrenone. Molecules. 2017;22:298. https://doi.org/10.3390/molecules22020298.

Published

30-09-2024
Statistics
Abstract Display: 70
PDF Downloads: 6

How to Cite

“Natural Green Synthesis of Silver Nanoparticles Using Leaf Extract of Guazuma Ulmifolia Lam. And Analysis of Its Antimicrobial, Anti-Inflammatory and Anticancer Activities”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 16, no. 5, Sept. 2024, pp. 813-24, https://doi.org/10.25004/IJPSDR.2024.160509.

Issue

Section

Research Article

How to Cite

“Natural Green Synthesis of Silver Nanoparticles Using Leaf Extract of Guazuma Ulmifolia Lam. And Analysis of Its Antimicrobial, Anti-Inflammatory and Anticancer Activities”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 16, no. 5, Sept. 2024, pp. 813-24, https://doi.org/10.25004/IJPSDR.2024.160509.