Analytical techniques for Reverse Engineering of Reference products for the development of generic Oral Solid Dosage Forms

Authors

  • Harsha Kathpalia Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy (Autonomous), Affiliated to the University of Mumbai, Chembur, Mumbai, Maharashtra 400074, India
  • Aditi Venkatesh Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
  • Atul Kaushik Hikma Pharmaceuticals LLC, Bayader Wadi Seer, Amman-11118 Jordan
  • Venkatesh Tammannavar Department of Pharmaceutics, Vivekanand Education Society’s College of Pharmacy (Autonomous), Affiliated to the University of Mumbai, Chembur, Mumbai, Maharashtra 400074, India

Abstract

Economical and speedy surrogates are cruces for successful generic product development. With value-driven drug development being key for generic pharmaceutical companies, pacing up innovator product characterization is an effective way to compete with heightened costs and pressures for bioequivalent surrogates. Generic product manufacturers characterize the Reference Listed Drug by reverse engineering techniques that serves as the basis for submission of the Abbreviated New Drug Application. Reverse Engineering is a systematic deformulation technique that is classified into three segments: (i) Characterization of small (non-complex) APIs- by determining morphology (including particle size distribution, solid-state and, crystal habit) (ii) Categorisation and analysis of complex APIs (peptides, polymeric compounds), (iii) Assessment of Excipients by Q1/Q2 evaluation. As of today, there is no prescribed step-by-step methodology for the process of reverse engineering. This review summarizes the essential analytical processes for the successful deformulation and characterization of the Reference Listed Drug product.

Keywords:

API characterization, Deformulation, Excipient characterization, Generic Pharmaceutical Products, Reference Listed Drug Characterization, Q1-Q2-Q3 sameness

DOI

https://doi.org/10.25004/IJPSDR.2025.170111

References

Pharmaceutical Formulation Development | Malvern Panalytical [Internet]. www.malvernpanalytical.com. Available from: https://www.malvernpanalytical.com/en/industries/pharmaceuticals/pharmaceutical-formulation-development

Drugs@FDA Glossary of Terms | FDA, (n.d.). https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-glossary-terms (accessed April 21, 2021)

Element. ANDA Regulatory Pathway: Q1/Q2(Q3) Deformulation & Equivalence [Internet]. Element. 2022 [cited 2024 Nov 8]. Available from: https://www.element.com/nucleus/2022/q1-q2-q3-deformulation-equivalence

Narang AS, Boddu SH. Excipient applications in formulation design and drug delivery. Springer International Publishing; 2015. Available from: https://link.springer.com/chapter/10.1007/978-3-319-20206-8_1

Roelvanbouwel. Deformulation (Re-Engineering) [Internet]. AgfaLabs. 2022 [cited 2024 Nov 8]. Available from: https://www.agfa.com/agfa-labs/analytical-services/deformulation-re-engineering

Drug Approval Package: Renvela (Sevelamer Carbonate) NDA #022127s000 [Internet]. Fda.gov. 2024 [cited 2024 Nov 8]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022127s000TOC.cfm

Drug Approval Package: Welchol (Colesevelarn Hydrochloride) NDA #21-141 & 21-176 [Internet]. Fda.gov. 2024 [cited 2024 Nov 8]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21-141_welchol.cfm

Research C for DE and. ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin Guidance for Industry [Internet]. U.S. Food and Drug Administration. 2021. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/andas-certain-highly-purified-synthetic-peptide-drug-products-refer-listed-drugs-rdna-origin

Jiang J. Navigating Q1/Q2 for Complex Generics [Internet]. Available from: https://accessiblemeds.org/sites/default/files/2019-11/Xiaohui_%28Jeff%29_Jiang_GRxBiosims2019.pdf

L.C. Thomas, Modulated DSC ® Paper #7 Characterization of Pharmaceutical Materials http://www.tainstruments.com/pdf/literature/TP_012_MDSC_num_7_Characterization_of_Pharmaceutical_Materials.pdf, n.d. http://www.tainstruments.com/pdf/literature/TP_012_MDSC_num_7_Characterization_of_Pharmaceutical_Materials.pdf (accessed July 27, 2021)

Byrn S, Pfeiffer R, Ganey M, Hoiberg C, Poochikian G. Pharmaceutical solids: a strategic approach to regulatory considerations. Pharmaceutical research. 1995 Jul;12:945-54

Tishmack PA, Bugay DE, Byrn SR. Solid-state nuclear magnetic resonance spectroscopy-pharmaceutical applications. Journal of pharmaceutical sciences. 2003 Mar 1;92(3):441-74. Available from: https://doi.org/10.1002/jps.10307

Miyamae A, Koda S, Kitamura S, Okamoto Y, Morimoto Y. X-ray crystallographic characterization of two polymorphs of 8-(2-methoxycarbonylamino-6-methylbenzyloxy)-2-methyl-3-(2-propynyl)-imidazo [1, 2-a] pyridine. Journal of pharmaceutical sciences. 1990 Mar 1;79(3):189-95. Available from: https://doi.org/10.1002/jps.2600790302

Hirsch CA, Messenger RJ, Brannon JL. Fenoprofen: drug form selection and preformulation stability studies. Journal of pharmaceutical sciences. 1978 Feb 1;67(2):231-6. Available from: https://doi.org/10.1002/jps.2600670227

Niazi S. Thermodynamics of mercaptopurine dehydration. Journal of Pharmaceutical Sciences. 1978 Apr;67(4):488-91. Available from: https://doi.org/10.1002/jps.2600670413

Antoncic L, Copar A, inventors; Lek Pharmaceuticals dd, assignee. Preparation of Telmisartan salts with Improved solubility. United States patent application US 11/718,838. 2009 Jan 8. Available from: https://patents.google.com/patent/US20090012140A1/en

Salt Selection in Drug Development [Internet]. PharmTech. Available from: https://www.pharmtech.com/view/salt-selection-drug-development

EP Monograph for Hygroscopicity. 2021

Jerry, Williams DR. Vapour Sorption and Surface Analysis. 2011 Mar 31;245–85. Available from: https://doi.org/10.1002/9780470656792.ch8

Venkateshaiah A, Padil VV, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers. 2020 Feb 27;12(3):512. Available from: https://doi.org/10.3390/polym12030512

Strachan C, Saarinen J, Lipiäinen T, Vuorimaa‐Laukkanen E, Rautaniemi K, Laaksonen T, et al. Spectroscopic methods in solid‐state characterization. Wiley Online Library [Internet]. 2020 Oct 30;27–95. Available from: https://doi.org/10.1002/9781119414018.ch2

Innopharma Technology. Methods of particle size determination -A review [Internet]. Available from: https://www.innopharmatechnology.com/docs/default-source/eyecon2-whitepapers/methods-of-particle-size-determination.pdf

Particle Analysis Techniques Compared :: Microtrac.com. Microtrac. Available from: https://www.microtrac.com/applications/knowledge-base/different-particle-analysis-techniques-compared/

P.G. Clarke, Low-Angle Light Scattering ( LALS ) for Molecular Weight Determinations by GPC / SEC Why Closer is Better, The Applications Book Viscotek Europe. (2003) 1–3

BET Specific Surface Area Testing - Particle Technology Labs. Particle Technology Labs. 2024. Available from: https://particletechlabs.com/analytical-testing/bet-specific-surface-area/

Kaur A, Kale DP, Bansal AK. Surface characterization of pharmaceutical solids. Trends in Analytical Chemistry. 2021 May 1;138:116228–8. Available from: https://doi.org/10.1016/j.trac.2021.116228

Particle Size & Particle Shape Analisis | MICROTRAC. Microtrac. Available from: https://www.microtrac.com/products/particle-size-shape-analysis/

Malvern, A basic guide to particle characterization, Malvern Whitepaper. (2015) 1–24. https://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle Size/Particle Characterization Guide.pdf

Shete G, Puri V, Kumar L, Bansal AK. Solid State Characterization of Commercial Crystalline and Amorphous Atorvastatin Calcium Samples. AAPS PharmSciTech [Internet]. 2010 Mar 29;11(2):598–609. Available from: https://doi.org/10.1208/s12249-010-9419-7

Measuring API Particle Size Distribution. PharmTech [Internet]. 2020 Nov 15; Available from: https://www.pharmtech.com/view/measuring-api-particle-size-distribution

Henson MJ, Zhang L. Drug Characterization in Low Dosage Pharmaceutical Tablets Using Raman Microscopic Mapping. Applied Spectroscopy [Internet]. 2006 Nov 1;60(11):1247–55. Available from: https://doi.org/10.1366/000370206778998987

Connor EF, Lees I, Maclean D. Polymers as drugs—Advances in therapeutic applications of polymer binding agents. Journal of Polymer Science Part a Polymer Chemistry [Internet]. 2017 Jul 11;55(18):3146–57. Available from: https://doi.org/10.1002/pola.28703

Sterns RH, Rojas M, Bernstein P, Chennupati S. Ion-Exchange Resins for the Treatment of Hyperkalemia. Journal of the American Society of Nephrology [Internet]. 2010 Feb 19;21(5):733–5. Available from: https://doi.org/10.1681/asn.2010010079

Davidson MH. The use of colesevelam hydrochloride in the treatment of dyslipidemia: a review. Expert Opinion on Pharmacotherapy [Internet]. 2007 Oct 1;8(15):2569–78. Available from: https://doi.org/10.1517/14656566.8.15.2569

EMEA Cholestagel Scientific Discussion, (2005) 1–15. https://www.ema.europa.eu/en/documents/scientific-discussion/cholestagel-epar-scientific-discussion_en.pdf

EMEA Renagel Scientific Discussion, (2005). https://www.ema.europa.eu/en/documents/scientific-discussion/renagel-epar-scientific-discussion_en.pdf

Determination of Phosphate binding capacity in sevelamer carbonate, sevelamer hydrochloride by Ion Chromatography, (n.d.). https://www.metrohm.com/en-in/company/news/in_sevelamer-hydrochloride/ (accessed July 11, 2021)

Berendt RT, Samy R, Carlin AS, Pendse A, Schwartz P, Khan MA, et al. Spontaneous Carbonate Formation in an Amorphous, Amine-Rich, Polymeric Drug Substance: Sevelamer HCl Product Quality. Journal of Pharmaceutical Sciences [Internet]. 2012 Jun 14;101(8):2681–5. Available from: https://doi.org/10.1002/jps.23228

US5667775A - Phosphate-binding polymers for oral administration - Google Patents, (n.d.). https://patents.google.com/patent/US5667775A/en (accessed May 13, 2021)

CHMP, EMA Constella, INN-linaclotide, (2012). https://www.ema.europa.eu/en/documents/assessment-report/constella-epar-public-assessment-report_en.pdf

USFDA, Draft Guidance on Linaclotide, (2018). https://www.accessdata.fda.gov/drugsatfda_docs/psg/Linaclotide-Capsule-NDA-202811-Page-RC-12-2018.pdf

Markham C. Luke, Equivalence of Locally-Acting Drug Products, (2017). https://www.fda.gov/media/105890/download (accessed May 10, 2021)

Koradia VS, Chawla G, Bansal AK. Comprehensive Characterisation of the Innovator Product: Targeting Bioequivalent Generics. Journal of Generic Medicines the Business Journal for the Generic Medicines Sector [Internet]. 2005 Jul 1;2(4):335–46. Available from: https://doi.org/10.1057/palgrave.jgm.4940086

Hydroxypropyl Methylcellulose (SB-806M HQ) | Shodex HPLC Columns and Standards. Available from: https://www.shodex.com/en/dc/03/06/45.html

Whelan MR, Ford JL, Powell MW. Simultaneous determination of ibuprofen and hydroxypropylmethylcellulose (HPMC) using HPLC and evaporative light scattering detection. Journal of Pharmaceutical and Biomedical Analysis [Internet]. 2002 Oct 28;30(4):1355–9. Available from: https://doi.org/10.1016/s0731-7085(02)00394-1

Ramírez B, Bucio L. Microcrystalline cellulose (MCC) analysis and quantitative phase analysis of ciprofloxacin/MCC mixtures by Rietveld XRD refinement with physically based background. Cellulose [Internet]. 2018 Apr 6;25(5):2795–815. Available from: https://doi.org/10.1007/s10570-018-1761-z

Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C. The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules [Internet]. 2007 Dec 4;9(1):57–65. Available from: https://doi.org/10.1021/bm700769p

Newman RH. Estimation of the lateral dimensions of cellulose crystallites using NMR signal strengths. Solid State Nuclear Magnetic Resonance [Internet]. 1999 Oct 1;15(1):21–9. Available from: https://doi.org/10.1016/s0926-2040(99)00043-0

HPLC-ELSD determination of Sodium Lauryl Sulphate and polysorbate in nebivolol drug product and different formulation products [Internet]. International Journal Of Pharmaceutical Sciences And Research | IJPSR. 2019. Available from: https://ijpsr.com/bft-article/hplc-elsd-determination-of-sodium-lauryl-sulphate-and-polysorbate-in-nebivolol-drug-product-and-different-formulation-products/

Haq N, Siddiqui NA, Alam P, Shakeel F, Alanazi FK, Alsarra IA. Estimation of sodium lauryl sulphate concentration in marketed formulations by stability-indicating ‘green’planar chromatographic method. Chiang Mai J. Sci. 2018 May;45(3). Available from: https://www.researchgate.net/profile/Nasir-Siddiqui-2/publication/326489888_Estimation_of_sodium_lauryl_sulphate_concentration_in_marketed_formulations_by_stability_indicating'Green'_planar_chromatographic_method/links/5e7c90eb458515efa0a9660e/Estimation-of-sodium-lauryl-sulphate-concentration-in-marketed-formulations-by-stability-indicatingGreen-planar-chromatographic-method.pdf

Sugisawa K, Kaneko T, Sago T, Sato T. Rapid quantitative analysis of magnesium stearate in pharmaceutical powders and solid dosage forms by atomic absorption: Method development and application in product manufacturing. Journal of Pharmaceutical and Biomedical Analysis [Internet]. 2009 Jan 10;49(3):858–61. Available from: https://doi.org/10.1016/j.jpba.2009.01.004

Arai T, Hosoi Y. Determination of Magnesium Stearate in Pharmaceutical Preparations Using Derivatization with 2-Nitrophenylhydrazine and HPLC. YAKUGAKU ZASSHI [Internet]. 2005 Mar 1;125(3):299–305. Available from: https://doi.org/10.1248/yakushi.125.299

A. Riby, Philip & Dey, D. & Patel, T. & Wande, The use of ICP-OES and ICP-MS in the assessment of magnesium stearate levels on tablets, Journal of Pharmacy and Pharmacology. (2009). https://www.researchgate.net/publication/296346239_The_use_of_ICP-OES_and_ICP-MS_in_the_assessment_of_magnesium_stearate_levels_on_tablets (accessed July 15, 2021)

Ion exchange chromatography TECH TIP #62, (2007). www.thermo.com/pierce (accessed July 15, 2021).

Carr JD, Swartzfager DG. Complexometric titration for the determination of sodium ion. Analytical Chemistry [Internet]. 1970 Sep 1;42(11):1238–41. Available from: https://doi.org/10.1021/ac60293a025

Zhu L, Seburg RA, Tsai EW. Determination of surface-bound hydroxypropylcellulose (HPC) on drug particles in colloidal dispersions using size exclusion chromatography: A comparison of ELS and RI detection. Journal of Pharmaceutical and Biomedical Analysis [Internet]. 2005 Oct 20;40(5):1089–96. Available from: https://doi.org/10.1016/j.jpba.2005.09.014

United States Pharmacopeia, Mannitol, in: The United States Pharmacopeial Convention, 2015. https://www.usp.org/sites/default/files/usp/document/harmonization/excipients/mannitol.pdf

Risley DS, Yang WQ, Peterson JA. Analysis of mannitol in pharmaceutical formulations using hydrophilic interaction liquid chromatography with evaporative light-scattering detection. Journal of Separation Science [Internet]. 2006 Feb 1;29(2):256–64. Available from: https://doi.org/10.1002/jssc.200500253

Jones SA, Martin GP, Brown MB. Determination of polyvinylpyrrolidone using high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis [Internet]. 2004 Mar 17;35(3):621–4. Available from: https://doi.org/10.1016/j.jpba.2004.01.024

Pedersen G, Kristensen HG. Quantitative Analysis of Povidone (PVP) in Drug–PVP Matrix Using Multicomponent Analysis. Drug Development and Industrial Pharmacy [Internet]. 1999 Jan 1;25(1):69–74. Available from: https://doi.org/10.1081/ddc-100102143

Berggren J, Frenning G, Alderborn G. Compression behaviour and tablet-forming ability of spray-dried amorphous composite particles. European Journal of Pharmaceutical Sciences [Internet]. 2004 May 14;22(2–3):191–200. Available from: https://doi.org/10.1016/j.ejps.2004.03.008

Sebhatu T, Ahlneck C, Alderborn G. The effect of moisture content on the compression and bond-formation properties of amorphous lactose particles. International Journal of Pharmaceutics [Internet]. 1997 Jan 1;146(1):101–14. Available from: https://doi.org/10.1016/s0378-5173(96)04777-1

De Bleye C, Sacré P y., Dumont E, Netchacovitch L, Chavez P f., Piel G, et al. Development of a quantitative approach using surface-enhanced Raman chemical imaging: First step for the determination of an impurity in a pharmaceutical model. Journal of Pharmaceutical and Biomedical Analysis [Internet]. 2013 Dec 1;90:111–8. Available from: https://doi.org/10.1016/j.jpba.2013.11.026

Lakio S, Vajna B, Farkas I, Salokangas H, Marosi G, Yliruusi J. Challenges in Detecting Magnesium Stearate Distribution in Tablets. AAPS PharmSciTech [Internet]. 2013 Feb 1;14(1):435–44. Available from: https://doi.org/10.1208/s12249-013-9927-3

Published

30-01-2025
Statistics
Abstract Display: 349
PDF Downloads: 143
Dimension Badge

How to Cite

“Analytical Techniques for Reverse Engineering of Reference Products for the Development of Generic Oral Solid Dosage Forms”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 1, Jan. 2025, pp. 74-82, https://doi.org/10.25004/IJPSDR.2025.170111.

Issue

Section

Review Article

How to Cite

“Analytical Techniques for Reverse Engineering of Reference Products for the Development of Generic Oral Solid Dosage Forms”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 1, Jan. 2025, pp. 74-82, https://doi.org/10.25004/IJPSDR.2025.170111.

Similar Articles

1-10 of 824

You may also start an advanced similarity search for this article.