In silico Evaluation of Phytochemicals from Calotropis gigantea (L.) Dryand. for Multi-Target Inhibition of Cobra Venom Proteins
Abstract
Snake envenomation leads to about 125,000 deaths yearly in worldwide, with India accounting for almost 50,000 of these fatalities. Even as antivenoms remain the primary treatment, they have got limitations, prompting the exploration of phytochemicals from Calotropis gigantea as potential multi-target therapies against cobra venom toxins. Fourteen venom proteins, namely phospholipase A2 (PLA2), cobrotoxin, L-amino acid oxidase, acetylcholinesterase, cobramin A, cobramin B, cytotoxin 3, long neurotoxins 1 to 5, serine protease and proteolase were the selected targets. The 3D structures of those venom proteins were downloaded from Protein Data Bank and SWISS-MODEL. A complete of 164 phytochemicals from C. gigantea was docked using AutoDock Vina and PyRx 8.0 to assess their binding capability. Compounds with binding energies ≤ -6 kcal/mol have been selected as hits based on their multi-target activity. Subsequently, Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties and molecular interactions of these molecules had been analysed, with choice standards specializing in binding affinity and pharmacokinetics. Molecular dynamics simulations over 100 ns, completed the usage of GROMACS 2018.1, identified β-amyrin and lupeol as effective inhibitors of PLA2, acetylcholinesterase, and cobrotoxin. Lupeol exhibited greater constancy throughout simulations, at the same time as β-amyrin more suitable enzyme structure stabilization. Both compounds demonstrated good pharmacokinetics, though issues such as low solubility and potential cardiac dangers warrant further research.
Keywords:
Cobra venom, Calotropis gigantea, Molecular docking, MD Simulations, Multi-targets, Phospholipase A2, Phytochemicals, ADMETDOI
https://doi.org/10.25004/IJPSDR.2025.170203References
Nisha NC, Sreekumar S, Biju CK. In vitro and in silico validation of anti-cobra venom activity and identification of lead molecules in Aegle marmelos (L.) Correa. . Current Sci. 2018 March 25;114(6):1214-21. doi: 10.18520/cs/v114/i06/1214-1221.
World Health Organization. Snakebite envenoming: a strategy for prevention and control, 2019. Available form: https://www.who.int/publications/i/item/9789241515641.
Nisha NC, Sreekumar S, Biju CK, Krishnan PN. Identification of lead compounds with cobra venom neutralizing activity in three Indian medicinal plants. Int J Pharm Pharm Sci. 2014 Jan;6:536-41.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi:10.1002/jcc.21334.
Shefin Basheera, Sreekumar S. Anti-Tuberculosis activity in Punica granatum: In silico validation and identification of lead molecules. Indian J Pharm Sci. 2021 Jan;778. doi:10.36468/pharmaceutical-science.788.
Douglas EV Pires, Tom L Blundell, David BA. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015 Apr 10;58(9):4066-72. doi: 10.1021/acs.jmedchem.5b00104.
Antoine Daina1, Olivier Michielin, VincentZoete. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717. doi:10.1038/srep42717.
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev. 2011 Sept12;111(10):6130-85. doi: 10.1021/cr200085w.
Gutiérrez JM, Lomonte B. Phospholipases A2: Unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon. 2013 Feb 1;62:27. doi: 10.1016/j.toxicon.2012.09.006.
Chang LS, Chou YC, Lin SR, Wu BN, Lin J, Hong E, Sun YJ, Hsiao CD. A novel neurotoxin, cobrotoxin B, from Naja naja atra (Taiwan cobra) venom: purification, characterization, and gene organization. J Biochem. 1997 Dec 1;122(6):1252-9. doi: 10.1093/oxfordjournals.jbchem.a021889.
Mohan SK, Yu C. Structure function relationships of cobrotoxin from naja naja atra. Toxin Rev. 2007 Jan 1;26(2):99-122. doi: 10.1080/15569540701209658.
Izidoro LF, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, da Silva SL, Zanchi FB, Zuliani JP, Fernandes CF, Calderon LA. Snake venom L‐amino acid oxidases: Trends in pharmacology and biochemistry. Biomed Res Int. 2014 Mar 12;2014(1):196754. doi: 10.1155/2014/196754.
Paloschi MV, Pontes AS, Soares AM, Zuliani JP. An update on potential molecular mechanisms underlying the actions of snake venom L-amino acid oxidases (LAAOs). Curr Med Chem. 2018 Jun 1;25(21):2520-30. doi: 10.2174/0929867324666171109114125.
Du XY, Clemetson KJ. Snake venom L-amino acid oxidases. Toxicon. 2002 Jun 1;40(6):659-65. doi: 10.1016/S0041-0101(02)00102-2.
Tan KK, Bay BH, Gopalakrishnakone P. L-amino acid oxidase from snake venom and its anticancer potential. Toxicon. 2018 Mar 15;144:7-13. doi: 10.1016/j.toxicon.2018.01.015.
Vyas VK, Brahmbhatt K, Bhatt H, Parmar U. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac J Trop Biomed. 2013 Feb 1;3(2):156-62. doi:10.1016/S2221-1691(13)60042-8.
Tougu V. Acetylcholinesterase: Mechanism of catalysis and inhibition. Cent Nerv Syst Agents Med Chem. 2001 Aug 1;1(2):155-70. doi: 10.2174/1568015013358536.
Taylor P, Radic Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol. 1994 Apr;34(1):281-320. doi: 10.1146/annurev.pa.34.040194.001433.
Aroniadou-Anderjaska V, Figueiredo TH, de Araujo Furtado M, Pidoplichko VI, Braga MF. Mechanisms of organophosphate toxicity and the role of acetylcholinesterase inhibition. Toxics. 2023 Oct 18;11(10):866. doi: 10.3390/toxics11100866.
Akaike A, Takada-Takatori Y, Kume T, Izumi Y. Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: role of α4 and α7 receptors in neuroprotection. J Mol Neurosci. 2010 Jan;40:211-6. doi: 10.1007/s12031-009-9236-1.
McGleenon BM, Dynan KB, Passmore AP. Acetylcholinesterase inhibitors in Alzheimer’s disease. Br J Clin Pharmacol. 1999 Oct;48(4):471. doi: 10.1046/j.1365-2125.1999.00026.x.
Li Y, Hai S, Zhou Y, Dong BR. Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev. 2015 Mar 3. doi: 10.1002/14651858.CD009444.pub3.
Walkinshaw MD, Saenger W, Maelicke A. Three-dimensional structure of the" long" neurotoxin from cobra venom. Proc Natl Acad Sci U S A. 1980 May;77(5):2400-4. doi: 10.1073/pnas.77.5.2400.
Ranawaka UK, Lalloo DG, de Silva HJ. Neurotoxicity in snakebite limits of our knowledge. PLoS Negl Trop Dis. 2013 Oct 10;7(10):2302. doi: 10.1371/journal.pntd.0002302.
Hiu JJ, Yap MK. The myth of cobra venom cytotoxin: More than just direct cytolytic actions. Toxicon: X. 2022 Jun 1; 14:100123. doi: 10.1016/j.toxcx.2022.100123.
Gasanov SE, Dagda RK, Rael ED. Snake venom cytotoxins, phospholipase A2s, and Zn2+ -dependent metalloproteinases: mechanisms of action and pharmacological relevance. J Clin Toxicol. 2014 Jan 25;4(1):1000181. doi: 10.4172/2161-0495.1000181.
Neema KN, Hamse Kameshwar V, Nafeesa Z, Kumar D, Babu Shubha P, Nagendra Prasad MN, Swamy SN. Serine protease from Indian cobra venom: its anticoagulant property and effect on human fibrinogen. Toxin Rev. 2022 Jan 2;41(1):165-74. doi: 10.1080/15569543.2020.1855656.
Olaoba OT, Dos Santos PK, Selistre-de-Araujo HS, de Souza DH. Snake venom metalloproteinases (SVMPs): A structure-function update. Toxicon: X. 2020 Sep 1;7:100052. doi: 10.1016/j.toxcx.2020.100052.
Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta Protein Struct Mol Enzymol. 2000 Mar 7;1477(12);146-56. doi. 10.1016/S0167-4838(99)00268-X.
Sliwoski G, Kothiwale S, Meiler J, Lowe EW. Computational methods in drug discovery. Pharmacol Rev. 2014 Jan;66(1):334-95. doi: 10.1124/pr.112.007336.
Jorgensen WL. The many roles of computation in drug discovery. Sci. 2004 Mar 19;303(5665):1813-18. doi:10.1126/science.1096361.
Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother. 2020 Apr;81:8-10. doi: 10.1016/j.biopha.2020.109821.
Patani GA, LaVoie EJ. Bioisosterism: A rational approach in drug design. Chem Rev. 1996 Dec 19;96(8):3147-76. doi: 10.1021/CR950066Q.
Sarkar A, Concilio S, Sessa L, Marrafino F, Piotto S. Advancements and novel approaches in modified autodock vina algorithms for enhanced molecular docking. Results Chem. 2024 Jan 14:101319. doi:10.1016/j.rechem.2024.101319.
Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, Green RK, Goodsell DS, Prlić A, Quesada M, Quinn GB. The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Res. 2012 Nov 27;41(D1):D475-82. doi: 10.1093/nar/gks1200.
Sugathan KJ, Sreekumar S, Kamalan BC. In silico screening and identification of lead molecules from Garcinia gummi-gutta with multitarget activity against SARS-CoV-2. J Appl Pharm Sci. 2024 July;14(7):124-32. doi: 10.7324/JAPS.2024.150413.
Morris GM, Huey R, Lindstrom W, Bevan DR, Dockett M, Sanner MF. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009 Apr 27;30(16):2785-91. doi: 10.1002/jcc.21256.
Balasubramanian K. Mathematical and computational techniques for drug discovery: promises and developments. Curr Med Chem. 2018 Dec 1;18(32):2774-99. doi: 10.2174/1568026619666190208164005.
Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016 Dec 12;12(1):2694-718. doi: 10.3762/bjoc.12.267.
Meyer E. Internal water molecules and H‐bonding in biological macromolecules: A review of structural features with functional implications. Protein Sci. 1992 Dec;1(12):1543-62. doi: 10.1002/pro.5560011203.
Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000 Oct 4;33(12):889-97. doi: 10.1021/ar000033j.
Bera I, Payghan PV. Use of molecular dynamics simulations in structure-based drug discovery. Curr Pharm Des. 2019;25(31):3339-49. doi: 10.2174/1381612825666190903153043.
Fusani L, Palmer DS, Somers DO, Wall ID. Exploring ligand stability in protein crystal structures using binding pose metadynamics. J Chem Inf Model. 2020 Jan 7;60(3);1528-39. doi: 10.1021/acs.jcim.9b00843.
Fu Y, Zhao J, Chen Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput Math Methods Med. 2018 Dec 4;2018(1): 3502514. doi: 10.1155/2018/3502514.
Zhao H, Caflisch A. Molecular dynamics in drug design. Eur J Med Chem. 2015 Feb 16;91:4-14. doi: 10.1016/j.ejmech.2014.08.004.
Lin JH. Accommodating protein flexibility for structure-based drug design. Curr Top Med Chem. 2011;11(2):171-78. doi: 10.2174/156802611794863580
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, Ji XL, Liu SQ. Insights into protein- ligand interactions: mechanisms, models, and methods. Int J Mol Sci. 2016 Jan 26;17(2):144. doi: 10.3390/ijms17020144.
Fang Y. Ligand-receptor interaction platforms and their applications for drug discovery. Expert Opin. 2012 Oct;7(10):969-88. doi: 10.1517/17460441.2012.715631.
Melo CM, Morais TC, Tomé AR, Brito GA, Chaves MH, Rao VS, Santos FA. Anti-inflammatory effect of α, β-amyrin, a triterpene from Protium heptaphyllum, on cerulein-induced acute pancreatitis in mice. J Inflamm Res. 2011 Jul;60:673-81. doi: 10.1007/s00011-011-0321-x.
Liu K, Zhang X, Xie L, Deng M, Chen H, Song J, Long J, Li X, Luo J. Lupeol and its derivatives as anticancer and anti-inflammatory agents: Molecular mechanisms and therapeutic efficacy. Pharmacol Res. 2021 Feb;164:105373. doi: 10.1016/j.phrs.2020.105373.
Singh OP, Singh B Chakravarty J, Sundar S. Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infect Dis Poverty. 2016 Mar 8;5:19. doi: 10.1186/s40249-016-0112-2.
Published


How to Cite
Issue
Section
Copyright (c) 2025 Aswathy Chandran, Sreekumar S, Keerthi Sugathan J, Biju CK

This work is licensed under a Creative Commons Attribution 4.0 International License.