Antibacterial Activity and In-silico Analysis of Rumex nepalensis Leaf Extract Against Staphylococcus aureus

Authors

  • Ninni Sutradhar Advanced Biotechnology Research Laboratory, Department of Biotechnology, St. Edmund’s College, Shillong-793003, Meghalaya, India
  • Saurav Thapa Advanced Biotechnology Research Laboratory, Department of Biotechnology, St. Edmund’s College, Shillong-793003, Meghalaya, India
  • Yogesh Negi Advanced Biotechnology Research Laboratory, Department of Biotechnology, St. Edmund’s College, Shillong-793003, Meghalaya, India
  • Jimoni Kalita Advanced Biotechnology Research Laboratory, Department of Biotechnology, St. Edmund’s College, Shillong-793003, Meghalaya, India
  • Samrat Adhikari Advanced Biotechnology Research Laboratory, Department of Biotechnology, St. Edmund’s College, Shillong-793003, Meghalaya, India

Abstract

The use of medicinal plants in traditional healthcare practices presents an exciting opportunity for novel antimicrobial agents. This research study investigated the antibacterial properties of Rumex nepalensis, a common ethnomedicinal plant, against Staphylococcus aureus, which is a clinically significant pathogen that causes a wide variety of human infections. The crude leaf extracts of R. nepalensis were tested using the agar well diffusion test. and the results showed significant inhibitory activity against S. aureus. Following phytochemical screening, compounds were identified using Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). Seven of the twelve bioactive compounds that were found - Chrysophanol, Hastatusides A, L-Phenylalanine, Schisandrin C, Cis-p-Coumaric acid, Pinoresinol, and Βeta-Caryophyllene - met the requirements for drug-likeness and were chosen for further analysis. The interaction of these drugs with S. aureus virulence-associated protein targets, including Gamma Haemolysin, Exfoliative Toxin, Lysostaphin-type Metalloendopeptidase, and Toxic Shock Syndrome Toxin-1, was evaluated using In-Silico Molecular Docking experiments. Strong binding affinities were shown by Chyrsophanol with all four targets, notably with Exfoliative Toxin, Lysostaphin, and Toxic Shock Syndrome Toxin. These results suggest that Chrysophanol is a potential bioactive component that supports R. nepalensis antibacterial action.

Keywords:

Staphylococcus aureus, Rumex nepalensis, Antibacterial

DOI

https://doi.org/10.25004/IJPSDR.2025.170403

References

Sandberg F, Corrigan D. Natural Remedies: Their Origins and Uses, 1st Edition. New York: Taylor & Francis, CRC Press. 2001. Available from: https://doi.org/10.1201/9781420024692

Lev E. Ethno-diversity within current ethno-pharmacology as part of Israeli traditional medicine -A review. J Ethnobiol Ethnomed. 2006;2:4. Available from: 10.1186/1746-4269-2-4

Rossato SC, De LeitãO-Filho HF, Begossi A. Ethnobotany of caiçaras of the Atlantic Forest coast (Brazil). Econ Bot. 1999;53:387-395. Available from: 10.1007/BF02866716

Al-Qura’n S. Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon. 2005;46:119-129. Available from: 10.1016/j.toxicon.2005.04.010

Cragg GM, Newman DJ. Natural product drug discovery in the next millennium. Pharm Biol. 2001;39:8-17. Available from: 10.1076/phbi.39.s1.8.0009

Brandbyge J. The families and genera of vascular plants. Flowering plants. Dicotyledons: Magnoliid, Hamamelid and Caryophyllid families. Berlin, Heidelber, Springer-Verlag; 1993;2: 531-544.

Fatima N, Zia M, Fatima Rizvi Z, Ahmed S. Biological activities of Rumex dentatus L: Evaluation of methanol and hexane extracts. Afr J Biotechnol. 2009;8.

Babulka P. Les rumex, de l’ethnobotanique à la phytothérapiemoderne (Rumex spp.). Phytothérapie. 2004;2:153-156. Available from: 10.1007/s10298-004-0042-1

Wegiera M, Grabarczyk P, Baraniak B, Danuta Smolarz H. Antiradical Properties of Extracts From Roots, Leaves and Fruits of Six Rumex L. Species. Acta Biol Crac Ser Bot. 2011;53:125-131. Available from: 10.2478/v10182-011-0018-z

Farooq U, Abaas G, Saggoo MIS, Dar MA. Ethno botany of some selected Monochlamydeae plant species from the Kashmir Himalaya, India. J Med Plant Res. 2014;8:834-839. Available from: 10.5897/JMPR2014.5470

Abbasi AM, Shah MH, Li T, Fu X, Guo X, Liu RH. Ethnomedicinal values, phenolic contents and antioxidant properties of wild culinary vegetables. J Ethnopharmacol. 2015;162:333-345. Available from: 10.1016/j.jep.2014.12.051

Farooq U, Pandith SA, Saggoo MIS, Latto Altitudinal variability in anthraquinone constituents from novel cytotypes of Rumex nepalensis Spreng- a high value medicinal herb of North Western Himalayas. Ind Crop Prod. 2013;50:112-117. Available from: https://doi.org/10.1016/J.INDCROP.2013.06.044

Kayang H. Tribal knowledge on wild edible plants of Meghalaya, Northeast India. Indian J Tradit Know. 2007;6:177-181.

Yadav S, Kumar S, Jain P, Pundir RK, Jadon S, Sharma A, Gupta KC. Antimicrobial activity of different extracts of roots of Rumex nepalensis Spreng. Int J Pharm Sci 2011;3.

Rao KNV, Ch S, Banji D, Sandhya S, Mahesh V. A study on the nutraceuticals from the genus Rumex. Hygeia J D Med 2011;3:76-88.

Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998;339:520-532. Available from: 10.1056/NEJM199808203390806

Sifri CD, Begun J, Ausubel FM, Calderwood SB. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun. 2003;71:2208-2217. Available from: 10.1128/IAI.71.4.2208-2217.2003

Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet. 2006;368:874-885. Available from: 10.1016/S0140-6736(06)68853-3

Mariutti RB, Tartaglia NR, Seyffert N, de Paula Castro TL, Arni RK, Azevedo VA, Nishifugi. Exfoliative Toxins of Staphylococcus aureus in The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus. Intech open London, UK. 2017. Available from: 10.5772/66528

Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972;36:407. Available from: 10.1128/br.36.4.407-477.1972

Shumba P, Mairpady Shambat S, Siemens N. The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins. 2019;11:332. Available from: 10.3390/toxins11060332

Andrey DO, Renzoni A, Monod A, Lew DP, Cheung AL, Kelley WL. Control of the Staphylococcus aureus Toxic Shock tst Promoter by the Global Regulator SarA. J Bacteriol. 2010;192:6077–6085. Available from: 10.1128/JB.00146-10

Odey MO, Iwara IA, Udiba UU, Johnson JT, Inekwe UV, Asenye ME, Victor O. Preparation of plant extracts from indigenous medicinal plants. Int J Sci Tech. 2012;1:688-692.

Schillinger U, Lücke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol. 1989;55:1901-1906. Available from: 10.1128/aem.55.8.1901-1906.1989

Harborne JB. Phenolic compounds inn Phytochemical methods. Springer. 1973; 33-88. Available from: https://doi.org/10.1007/978-94-009-5921-7_2

Sofowora A. Research on medicinal plants and traditional medicine in Africa. J Altern Complement Med. 1996;2:365-372. Available from: 10.1089/acm.1996.2.365

Varughese B, Tripathi J. Phytochemical Evaluation of different Solvent Extracts of Aegle marmelos fruit at different Stages of its Ripening. Adv Life Sci Technol. 2013;8:8-12.

Odebiyi OO, Sofowora EA. Phytochemical screening of Nigerian medicinal plants II. Lloydia. 1978;41:234-246.

Edrah SM, Alafid F, Imramovský A, Altwair K, Alkhumsi SI, Hrdina R. Phytochemical Screening and Antibacterial Activity of Genista microcephala and Rosmarinus officinalis Extracts from Libyan’s Regions. Int J Res Ayurveda Pharm. 2017;8:52-56. Available from: 10.7897/2277-4343.084215

Gul R, Jan SU, Faridullah S, Sherani S, Jahan N. Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan. Sci World J. 2017;1-7. Available from: 10.1155/2017/5873648

Kumar Bargah R. Preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringa pterygosperma Gaertn. J Pharmacogn Phytochem. 2015;4:07-09.

Willcott MR. MestRe Nova. J Am Chem Soc. 2009;131:13180. Available from: 10.1021/ja906709t

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:03-25. Available from: 10.1016/s0169-409x(00)00129-0

Vath GM, Earhart CA, Rago JV, Kim MH, Bohach GA, Schlievert PM, Ohlendorf DH. The structure of the superantigen exfoliative toxin A suggests a novel regulation as a serine protease. Biochemistry. 1997;36:1559-1566. Available from: 10.1021/bi962614f

Firczuk M, Mucha A, Bochtler M. Crystal structures of active LytM. J Mol Biol 2005;354:578-590. Available from: 10.1016/j.jmb.2005.09.082

Yamashita K, Kawai Y, Tanaka Y, Hirano N, Kaneko J, Tomita N, Tanaka I. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci USA. 2011;108:17314-17319. Available from: 10.1073/pnas.1110402108

Sospedra I, Mañes J, Soriano JM. Report of toxic shock syndrome toxin 1 (TSST-1) from Staphylococcus aureus isolated in food handlers and surfaces from foodservice establishments. Ecotoxicol Environ Saf 2012;80:288-290. Available from: 10.1016/j.ecoenv.2012.03.011

Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Fagan P. The Protein Data Bank. Acta Cryst D. 2002;58:899-907. Available from: 10.1107/s0907444902003451

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403-410. Available from: https://doi.org/10.1016/S0022-2836(05)80360-2

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785-2791. Available from: 10.1002/jcc.21256

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. Journal of Cheminformatics. 2011;3:33. Available from: 10.1186/1758-2946-3-33

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605-1612. Available from: 10.1002/jcc.20084

Palombo EA. Phytochemicals from traditional medicinal plants used in the treatment of diarrhoea: modes of action and effects on intestinal function. Phytother Res. 2006;20:717-724. Available from: 10.1002/ptr.1907

Kuge T, Shibata T, Willett MS, Turck P, Traul KA. Lack of oncogenicity of wood creosote, the principal active ingredient of Seirogan, an herbal antidiarrheal medication, in Sprague-Dawley rats. Int J Toxicol. 2001;20:297-305. Available from: 10.1080/109158101753253036

Rasigade JP, Vandenesch F. Staphylococcus aureus: a pathogen with still unresolved issues. Infect Genet Evol. 2014;21:510-514. Available from: 10.1016/j.meegid.2013.08.018

Boucher HW, Corey GR. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2008;46:344-349. Available from: 10.1086/533590

Ghosh L, Gayen JR, Sinha S, Pal S, Pal M, Saha BP. Antibacterial efficacy of Rumex nepalensis Spreng. roots. Phytother Res. 2003;17:558-559. Available from: 10.1002/ptr.1162

Hussain F, Ahmad B, Hameed I, Dastagir G, Sanaullah P, Azam S. Antibacterial, antifungal and insecticidal activities of some selected medicinal plants of polygonaceae. Afr J Biotechnol. 2010;9:5032-5036.

Shrestha RL, Timilsina N. Antioxidant and antimicrobial activity and GC-MS analysis of extract of Rumex nepalensis Spreng. Pharma Innovation. 2017;6:155-158.

Shaikh S, Shriram V, Srivastav A, Barve P, Kumar V. A critical review on Nepal Dock (Rumex nepalensis): A tropical herb with immense medicinal importance. Asian Pac J Trop Biomed. 2018;11:405. Available from: 10.4103/1995-7645.237184

Jain P, Parkhe G. An updated review on pharmacological studies of Rumex nepalensis. Pharma Innovation J. 2018;7:175-181.

Kumar S, Joseph L, George M, Bharati V. Antimicrobial activity of methanolic extract of Rumex nepalensis leaves. Int J Pharm Pharm Sci. 2011;3:240-242.

Mukherjee K, Ray LN. Phytochemical Screening of Some Indian Medical Plant Species Part II. Int J Crude Drug Res. 1986;24:187-205.

Sahreen S, Khan MR, Khan RA, Hadda TB. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots. BMC Complement Altern Med. 2015;15:211. Available from: 10.1186/s12906-015-0736-y

Ali AM, Ismail NH, Mackeen MM, Yazan LS, Mohamed SM, Ho AS, Lajis NH. Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharm Biol. 2000;38:298-301. Available from: 10.1076/1388-0209(200009)3841-AFT298

Lu C, Wang H, Lv W, Ma C, Xu P, Zhu J, Zhou Q. Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction Combined with UPLC for the Determination of Anthraquinones in Rhubarb. Chromatographia. 2011;74:139-144. Available from: 10.1007/s10337-011-2023-5

Comini LR, Montoya SCN, Páez PL, Argüello GA, Albesa I, Cabrera JL. Antibacterial activity of anthraquinone derivatives from Heterophyllaea pustulata (Rubiaceae). J Photochem Photobiol B. 2011;102:108-114. Available from: 10.1016/j.jphotobiol.2010.09.009

Hatano T, Uebayashi H, Ito H, Shiota S, Tsuchiya T, Yoshida T. Phenolic constituents of Cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem Pharm Bull. 1999;47:1121-1127. Available from: 10.1248/cpb.47.1121

Prateeksha, Yusuf MA, Singh BN, Sudheer S, Kharwar RN, Siddiqui S, Abdel-Azeem AM, Gupta VK. Chrysophanol: A Natural Anthraquinone with Multifaceted Biotherapeutic Potential. Biomolecules. 2019;9:68. Available from: 10.3390/biom9020068

Lee MS, Sohn CB. Anti-diabetic properties of chrysophanol and its glucoside from rhubarb rhizome. Biol Pharm Bull. 2008;31:2154-2157. Available from: 10.1248/bpb.31.2154

Kim SJ, Kim MC, Lee BJ, Park DH, Hong SH, Um JY. Anti-Inflammatory Activity of Chrysophanol through the suppression of NF-kB/Caspase-1 Activation in Vitro and in Vivo. Molecules. 2010;15:6436-6451. Available from: https://doi.org/10.3390/molecules15096436

Kim JS, Yi HK. Schisandrin C enhances mitochondrial biogenesis and autophagy in C2C12 skeletal muscle cells: potential involvement of anti-oxidative mechanisms. Naunyn Schmiedeberg’s Arch Pharmacol. 2018;391:197-206. Available from: 10.1007/s00210-017-1449-1

During A, Debouche C, Raas T, Larondelle Y. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells. J Nutr. 2012;142:1798-1805. Available from: 10.3945/jn.112.162453

Published

30-07-2025
Statistics
Abstract Display: 252
PDF Downloads: 238
Dimension Badge

How to Cite

“Antibacterial Activity and In-Silico Analysis of Rumex Nepalensis Leaf Extract Against Staphylococcus Aureus”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 4, July 2025, pp. 323-3, https://doi.org/10.25004/IJPSDR.2025.170403.

Issue

Section

Research Article

How to Cite

“Antibacterial Activity and In-Silico Analysis of Rumex Nepalensis Leaf Extract Against Staphylococcus Aureus”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 4, July 2025, pp. 323-3, https://doi.org/10.25004/IJPSDR.2025.170403.