Alkaloids – Bridging Natural Products in Antidiabetic Therapy

Authors

Abstract

This review comprehensively evaluates the antidiabetic potential of alkaloids, their mechanisms of action, and their prospects as therapeutic agents for diabetes mellitus. A systematic review of published literature was conducted using databases including Elsevier, Science Direct, MDPI, Springers, and Taylor and Francis, focusing on alkaloids isolated from medicinal plants with reported antidiabetic activity, with botanical names validated via World Flora Online. Existing research revealed that alkaloids such as berberine and vindoline demonstrate significant antidiabetic effects through mechanisms like enhancing insulin sensitivity, stimulating insulin secretion, inhibiting digestive enzymes, and modulating gut microbiota. Notably, Berberis vulgaris L. and Coptis chinensis Franch. serve as key sources of berberine. In conclusion, alkaloids hold promise as supplementary or alternative therapies for diabetes mellitus, though further research is essential to fully elucidate their mechanisms and optimize clinical applications.

Keywords:

Diabetes Mellitus, Medicinal Plants, Alkaloids, Antidiabetic, Insulin Sensitivity, Oxidative Stress

DOI

https://doi.org/10.25004/

Author Biographies

Dr. Rajesh R, Acharya & B.M. Reddy college of pharmacy

Professor & HOD of Pharmaceutical analysis Department

Ms Haripriya E, Sravathi AI Technology Pvt Ltd

Post Graduate student in Pharmaceutical chemistry

References

Low, C.Y., Gan, W.L., Lai, S.J., Tam, R.S.M., Tan, J.F., Dietl, S., Chuah, L.H., Voelcker, N. and Bakhtiar, A., 2025. Critical updates on oral insulin drug delivery systems for type 2 diabetes mellitus. Journal of Nanobiotechnology, 23(1), p.16. https://doi.org/10.1186/s12951-024-02176-1

Idris, I.B., Dahlan, S.A., Rahman, R.A. and Nawi, A.M., 2025. Beyond individual-level factors that influence family planning uptake among women with diabetes mellitus: a systematic literature review. BMC Public Health, 25(1), p.317. https://doi.org/10.1186/s12889-024-17414-6

Ong, K.L., Stafford, L.K., McLaughlin, S.A., Boyko, E.J., Vollset, S.E., Smith, A.E., Dalton, B.E., Duprey, J., Cruz, J.A., Hagins, H. and Lindstedt, P.A., 2023. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet, 402(10397), pp.203–234. https://doi.org/10.1016/S0140-6736(23)01301-6

Malongane, F., Phoswa, W.N. and Berejena, T., 2024. The effect of indigenous African diet on inflammatory markers linked to type 2 diabetic mellitus. Human Nutrition & Metabolism, 35, p.200236. https://doi.org/10.1016/j.hnm.2024.200236

American Diabetes Association Professional Practice Committee, 2025. Diagnosis and classification of diabetes: standards of care in diabetes—2025. Diabetes Care, 48(Suppl 1), pp.S27–S49. https://doi.org/10.2337/dc25-S002

Singh, N., Kesherwani, R., Tiwari, A.K. and Patel, D.K., 2016. A review on diabetes mellitus. The Pharma Innovation Journal, 5(7, Part A), p.36.

Behl, T., Gupta, A., Albratty, M., Najmi, A., Meraya, A.M., Alhazmi, H.A., Anwer, M.K., Bhatia, S. and Bungau, S.G., 2022. Alkaloidal phytoconstituents for diabetes management: exploring the unrevealed potential. Molecules, 27(18), p.5851. https://doi.org/10.3390/molecules27185851

Umashankar, D.D., 2020. Plant secondary metabolites as potential usage in regenerative medicine. Journal of Phytopharmacology, 9(4), pp.270–273P.

Yedjou, C.G., Grigsby, J., Mbemi, A., Nelson, D., Mildort, B., Latinwo, L. and Tchounwou, P.B., 2023. The management of diabetes mellitus using medicinal plants and vitamins. International Journal of Molecular Sciences, 24(10), p.9085. https://doi.org/10.3390/ijms24109085

Zhu, J., Song, L., Shen, S., Fu, W., Zhu, Y. and Liu, L., 2023. Bioactive alkaloids as secondary metabolites from plant endophytic Aspergillus genus. Molecules, 28(23), p.7789. https://doi.org/10.3390/molecules28237789

Bhambhani, S., Kondhare, K.R. and Giri, A.P., 2021. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 26(11), p.3374. https://doi.org/10.3390/molecules26113374

Gutiérrez-Grijalva, E.P., López-Martínez, L.X., Contreras-Angulo, L.A., Elizalde-Romero, C.A. and Heredia, J.B., 2020. Plant alkaloids: Structures and bioactive properties. In: Plant-derived bioactives: chemistry and mode of action. Elsevier, pp.85–117.

Gutiérrez-Grijalva, E.P., Contreras-Angulo, L.A., Emus-Medina, A. and Heredia, J.B., 2021. Plant alkaloids with antidiabetic potential. In: Structure and Health Effects of Natural Products on Diabetes Mellitus. Elsevier, pp.251–266.

Dey, P., Kundu, A., Kumar, A., Gupta, M., Lee, B.M., Bhakta, T., Dash, S. and Kim, H.S., 2020. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent Advances in Natural Products Analysis, pp.505–567. Elsevier. https://doi.org/10.1016/B978-0-12-816455-6.00017-4

Dahiru, M.M., 2023. Recent advances in the therapeutic potential phytochemicals in managing diabetes. Journal of Clinical and Basic Research, 7(1), pp.13–20.

Shehadeh, M.B., Suaifan, G.A. and Abu-Odeh, A.M., 2021. Plants secondary metabolites as blood glucose-lowering molecules. Molecules, 26(14), p.4333. https://doi.org/10.3390/molecules26144333

Xu, X., Yi, H., Wu, J., Kuang, T., Zhang, J., Li, Q., Du, H., Xu, T., Jiang, G. and Fan, G., 2021. Therapeutic effect of berberine on metabolic diseases: Both pharmacological data and clinical evidence. Biomedicine & Pharmacotherapy, 133, p.110984. https://doi.org/10.1016/j.biopha.2020.110984

Di, S., Han, L., An, X., Kong, R., Gao, Z., Yang, Y., Wang, X., Zhang, P., Ding, Q., Wu, H. and Wang, H., 2021. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications. Journal of Ethnopharmacology, 276, p.114180. https://doi.org/10.1016/j.jep.2021.114180

Ye, Y., Liu, X., Wu, N., Han, Y., Wang, J., Yu, Y. and Chen, Q., 2021. Efficacy and safety of berberine alone for several metabolic disorders: a systematic review and meta-analysis of randomized clinical trials. Frontiers in Pharmacology, 12, p.653887. https://doi.org/10.3389/fphar.2021.653887

Londzin, P., Kocik, S., Kisiel-Nawrot, E., Janas, A., Skoczyńska, A., Krivošíková, Z., Štefíková, K., Gajdoš, M., Cegieła, U. and Folwarczna, J., 2022. Lack of berberine effect on bone mechanical properties in rats with experimentally induced diabetes. Biomedicine & Pharmacotherapy, 146, p.112562. https://doi.org/10.1016/j.biopha.2021.112562

Zhang H, Wang X, Wang T, Chen K, Wang H, Jia Q, Li Y. Enhancement of berberine hypoglycemic activity by oligomeric proanthocyanidins. Molecules. 2018 Dec 14;23(12):3318.

Khater SI, Almanaa TN, Fattah DM, Khamis T, Seif MM, Dahran N, Alqahtani LS, Metwally MM, Mostafa M, Albedair RA, Helal AI. Liposome-encapsulated Berberine alleviates liver injury in type 2 diabetes via promoting AMPK/mTOR-mediated autophagy and reducing ER stress: morphometric and Immunohistochemical scoring. Antioxidants. 2023 Jun;12(6):1220.

Ren G, Ding YW, Wang LL, Jiang JD. Berberine stimulates lysosomal AMPK independent of PEN2 and maintains cellular AMPK activity through inhibiting the dephosphorylation regulator UHRF1. Frontiers in pharmacology. 2023 Apr 18;14:1148611.

Chen Y, Li Q, Zhao S, Sun L, Yin Z, Wang X, Li X, Iwakiri Y, Han J, Duan Y. Berberine protects mice against type 2 diabetes by promoting PPARγ-FGF21-GLUT2-regulated insulin sensitivity and glucose/lipid homeostasis. Biochemical Pharmacology. 2023 Dec 1;218:115928.

Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon. 2023 Nov 3.

Nam SW, Hwang JW, Han YH. A novel berberine derivative targeting adipocyte differentiation to alleviate TNF-α-induced inflammatory effects and insulin resistance in OP9 cells. Biomedicine & Pharmacotherapy. 2023 Nov 1;167:115433.

Almowallad S, Al-Massabi R. Berberine modulates cardiovascular diseases as a multitarget-mediated alkaloid with insights into its downstream signals using in silico prospective screening approaches. Saudi Journal of Biological Sciences. 2024 May 1;31(5):103977.

Chen X, Mei XY, Ren ZM, Chen SS, Tong YL, Zhang CP, Chen J, Dai GH. Comprehensive insights into berberine's hypoglycemic mechanisms: A focus on ileocecal microbiome in db/db mice. Heliyon. 2024 Jul 15;10(13).

Yang HC, Wang GJ, Xia Y, Tian JJ, Xie J, Zhang K, Li ZF, Yu EM, Li HY, Gong WB, Xie WP. Dietary berberine ameliorates glucose metabolism by regulating the FXR pathway in largemouth bass (Micropterus salmoides). Aquaculture Reports. 2024 Apr 1;35:101988.

Liu H, Wei M, Tan B, Dong X, Xie S. The Supplementation of Berberine in High-Carbohydrate Diets Improves Glucose Metabolism of Tilapia (Oreochromis niloticus) via Transcriptome, Bile Acid Synthesis Gene Expression and Intestinal Flora. Animals. 2024 Apr 20;14(8):1239.

Xie W, Su F, Wang G, Peng Z, Xu Y, Zhang Y, Xu N, Hou K, Hu Z, Chen Y, Chen R. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis. Frontiers in pharmacology. 2022 Nov 16;13:1015045.

Wang F, Neumann D, Kapsokalyvas D, Hoes MF, Schianchi F, Glatz JF, Nabben M, Luiken JJ. Specific Compounds Derived from Traditional Chinese Medicine Ameliorate Lipid-Induced Contractile Dysfunction in Cardiomyocytes. International Journal of Molecular Sciences. 2024 Jul 25;25(15):8131.

Li C, Cao H, Huan Y, Ji W, Liu S, Sun S, Liu Q, Lei L, Liu M, Gao X, Fu Y. Berberine combined with stachyose improves glycometabolism and gut microbiota through regulating colonic microRNA and gene expression in diabetic rats. Life Sciences. 2021 Nov 1;284:119928.

Wang Z, Shao Y, Wu F, Luo D, He G, Liang J, Quan X, Chen X, Xia W, Chen Y, Liu Y. Berberine ameliorates vascular dysfunction by downregulating TMAO-endoplasmic reticulum stress pathway via gut microbiota in hypertension. Microbiological Research. 2024 Oct 1;287:127824.

Das K, Iyer KR, Orfali R, Asdaq SM, Alotaibi NS, Alotaibi FS, Alshehri S, Quadri MS, Almarek A, Makhashin NB, Alrashed AA. In silico studies and evaluation of in vitro antidiabetic activity of berberine from ethanol seed extract of Coscinium fenestratum (Gaertn.) Colebr. Journal of King Saud University-Science. 2023 Jul 1;35(5):102666.

Yang F, Gao R, Luo X, Liu R, Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Frontiers in Nutrition. 2023 Aug 3;10:1187718.

Zhang JJ, Zhou R, Deng LJ, Cao GZ, Zhang Y, Xu H, Hou JY, Ju S, Yang HJ. Huangbai liniment and berberine promoted wound healing in high-fat diet/Streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy. 2022 Jun 1;150:112948.

Hareeri RH, Hofni A. Berberine alleviates uterine inflammation in rats via modulating the TLR-2/p-PI3K/p-AKT axis. International Immunopharmacology. 2024 Nov 15;141:112931.

Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Berberine inhibits NLRP3 inflammasome activation and proinflammatory macrophage M1 polarization to accelerate peripheral nerve regeneration. Neurotherapeutics. 2024 Jul 1;21(4):e00347.

Alnuqaydan AM, Almutary AG, Azam M, Manandhar B, De Rubis G, Madheswaran T, Paudel KR, Hansbro PM, Chellappan DK, Dua K. Phytantriol-based berberine-loaded liquid crystalline nanoparticles attenuate inflammation and oxidative stress in lipopolysaccharide-induced RAW264. 7 macrophages. Nanomaterials. 2022 Dec 5;12(23):4312.

Tang Y, Gao Y, Nie K, Wang H, Chen S, Su H, Huang W, Dong H. Jiao-tai-wan and its effective component-berberine improve diabetes and depressive disorder through the cAMP/PKA/CREB signaling pathway. Journal of Ethnopharmacology. 2024 Apr 24;324:117829.

Skonieczna M, Adamiec-Organisciok M, Hudy D, Dziedzic A, Los L, Skladany L, Grgurevic I, Filipec-Kanizaj T, Jagodzinski M, Kukla M, Nackiewicz J. Hepatocellular cancer cell lines, Hep-3B and Hep-G2 display the pleiotropic response to resveratrol and berberine. Advances in Medical Sciences. 2022 Sep 1;67(2):379-85.

Zhang M, Li J, Guo X, Wang X, Shi D, Cui L, Zhou Y. Co-administration of berberine/gypenosides/bifendate ameliorates metabolic disturbance but not memory impairment in type 2 diabetic mice. Heliyon. 2021 Jan 1;7(1).

Panda DS, Eid HM, Elkomy MH, Khames A, Hassan RM, Abo El-Ela FI, Yassin HA. Berberine encapsulated lecithin–chitosan nanoparticles as innovative wound healing agent in type II diabetes. Pharmaceutics. 2021 Aug 4;13(8):1197.

Khvostov MV, Gladkova ED, Borisov SA, Zhukova NA, Marenina MK, Meshkova YV, Luzina OA, Tolstikova TG, Salakhutdinov NF. Discovery of the first in class 9-N-berberine derivative as hypoglycemic agent with extra-strong action. Pharmaceutics. 2021 Dec 12;13(12):2138.

Nguyen DV, Hengphasatporn K, Danova A, Suroengrit A, Boonyasuppayakorn S, Fujiki R, Shigeta Y, Rungrotmongkol T, Chavasiri W. Structure—yeast α-glucosidase inhibitory activity relationship of 9-O-berberrubine carboxylates. Scientific Reports. 2023 Nov 1;13(1):18865.

Ren G, Wang YX, Li YH, Song DQ, Kong WJ, Jiang JD. Structure-activity relationship of berberine derivatives for their glucose-lowering activities. Int. J. Clin. Exp. Med. 2017 Jan 1;10(3):5054-60.

Martini D, Pucci C, Gabellini C, Pellegrino M, Andreazzoli M. Exposure to the natural alkaloid Berberine affects cardiovascular system morphogenesis and functionality during zebrafish development. Scientific reports. 2020 Oct 15;10(1):17358.

Rigillo G, Cappellucci G, Baini G, Vaccaro F, Miraldi E, Pani L, Tascedda F, Bruni R, Biagi M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioavailability and Safety.

Liu T, Huang Y, Jiang L, Dong C, Gou Y, Lian J. Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Communications Biology. 2021 Sep 16;4(1):1089.

Zhou P, Chen M. Exploration of the mechanisms of differential indole alkaloid biosynthesis in dedifferentiated and cambial meristematic cells of catharanthus roseus using transcriptome sequencing. Frontiers in Genetics. 2022 Jun 30;13:867064.

Rahman N, Muhammad I, Khan H, Aschner M, Filosa R, Daglia M. Molecular docking of isolated alkaloids for possible α-glucosidase inhibition. Biomolecules. 2019 Sep 27;9(10):544.

Goboza M, Meyer M, Aboua YG, Oguntibeju OO. In vitro antidiabetic and antioxidant effects of different extracts of Catharanthus roseus and its indole alkaloid, vindoline. Molecules. 2020 Nov 26;25(23):5546.

Goyal R, Kumar M, Mallick MA. Analysis of multi-disease targeting effect of phytochemicals by AMPK stimulation–diabetes: A computational approach. Gene & Protein in Disease. 2023 Sep 12;2(3):0927.

Shijina BN, Radhika A, Sherin S, Biju PG. Vindoline Exhibits Anti-Diabetic Potential in Insulin-Resistant 3T3-L1 Adipocytes and L6 Skeletal Myoblasts. Nutrients. 2023 Jun 24;15(13):2865.

Goboza M, Aboua YG, Chegou N, Oguntibeju OO. Vindoline effectively ameliorated diabetes-induced hepatotoxicity by docking oxidative stress, inflammation and hypertriglyceridemia in type 2 diabetes-induced male Wistar rats. Biomedicine & pharmacotherapy. 2019 Apr 1;112:108638.

Oguntibeju OO, Aboua Y, Goboza M. Vindoline—a natural product from Catharanthus roseus reduces hyperlipidemia and renal pathophysiology in experimental type 2 diabetes. Biomedicines. 2019 Aug 13;7(3):59.

Oguntibeju OO, Aboua Y, Kachepe P. Possible therapeutic effects of vindoline on testicular and epididymal function in diabetes-induced oxidative stress male Wistar rats. Heliyon. 2020 Apr 1;6(4).

Tiong SH, Looi CY, Hazni H, Arya A, Paydar M, Wong WF, Cheah SC, Mustafa MR, Awang K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013 Aug 15;18(8):9770-84.

Adhikari B. Roles of alkaloids from medicinal plants in the management of diabetes mellitus. Journal of Chemistry. 2021;2021(1):2691525.

Nisat UT, Jahan N, Afrin SR, Akter B, Nahar A, Islam MR, Hossain MK. Phytochemical, Ethnopharmacological, and Medicinal Importance of Catharanthus roseus (Apocyanaceae): A Mini-review. South Asian Research Journal of Natural Products. 2024 May 4;7(2):87-101.

Goyal R, Kumar M, Mallick MA. Drug innovation studies targeting Diabetes: A computational docking approach on multi-drug targets including COVID Inhibitors.

Keglevich P, Hazai L, Kalaus G, Szántay C. Modifications on the basic skeletons of vinblastine and vincristine. Molecules. 2012 May 18;17(5):5893-914.

Yao XG, Chen F, Li P, Quan L, Chen J, Yu L, Ding H, Li C, Chen L, Gao Z, Wan P. Natural product vindoline stimulates insulin secretion and efficiently ameliorates glucose homeostasis in diabetic murine models. Journal of ethnopharmacology. 2013 Oct 28;150(1):285-97.

Silvestri R. New prospects for vinblastine analogues as anticancer agents. Journal of medicinal chemistry. 2013 Feb 14;56(3):625-7.

Zsoldos B, Nagy N, Donkó-Tóth V, Keglevich P, Weber M, Dékány M, Nehr-Majoros A, Szőke É, Helyes Z, Hazai L. Novel Piperazine Derivatives of Vindoline as Anticancer Agents. International Journal of Molecular Sciences. 2024 Jul 19;25(14):7929.

Dhanwad RM, Usha R, Ganesh S. In Silico Evaluation of Pharmacokinetics and Toxicity Profile of Alkaloids Present in Leaves of Catharanthus roseus L. RGUHS Journal of Pharmaceutical Sciences. 2024;14(4).

Guo Y, Li L, Yao Y, Li H. Regeneration of pancreatic β-cells for diabetes therapeutics by natural DYRK1A inhibitors. Metabolites. 2022 Dec 29;13(1):51.

Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic kinome inhibitors—A new opportunity for β-cells restoration. International Journal of Molecular Sciences. 2021 Aug 23;22(16):9083.

Title AC, Karsai M, Mir-Coll J, Grining ÖY, Rufer C, Sonntag S, Forschler F, Jawurek S, Klein T, Yesildag B. Evaluation of the effects of harmine on β-cell function and proliferation in standardized human islets using 3D high-content confocal imaging and automated analysis. Frontiers in Endocrinology. 2022 Jul 4;13:854094.

Barzowska A, Pucelik B, Pustelny K, Matsuda A, Martyniak A, Stępniewski J, Maksymiuk A, Dawidowski M, Rothweiler U, Dulak J, Dubin G. DYRK1A Kinase inhibitors promote β-cell survival and insulin homeostasis. Cells. 2021 Aug 31;10(9):2263.

Wang X, Zhang L, Qin L, Wang Y, Chen F, Qu C, Miao J. Physicochemical properties of the soluble dietary fiber from laminaria japonica and its role in the regulation of type 2 diabetes mice. Nutrients. 2022 Jan 13;14(2):329.

Mohammadi F, Karimi E, Homayouni-Tabrizi M, Oskoueian E. Nanoparticle-based delivery of harmine: A comprehensive study on synthesis, characterization, anticancer activity, angiogenesis and toxicity Evaluation. Heliyon. 2024 Jun 15;10(11).

Morsy MH, Nabil ZI, Darwish ST, Al-Eisa RA, Mehana AE. Anti-diabetic and anti-adipogenic effect of harmine in high-fat-diet-induced diabetes in mice. Life. 2023 Aug 5;13(8):1693.

Kumar K, Wang P, A. Swartz E, Khamrui S, Secor C, B. Lazarus M, Sanchez R, F. Stewart A, DeVita RJ. Structure–activity relationships and biological evaluation of 7-substituted harmine analogs for human β-cell proliferation. Molecules. 2020 Apr 23;25(8):1983.

Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A, Stewart AF. Induction of human pancreatic beta cell replication by inhibitors of dual specificity tyrosine regulated kinase. Nature medicine. 2015 Apr;21(4):383.

Wurzlbauer A, Rüben K, Gürdal E, Chaikuad A, Knapp S, Sippl W, Becker W, Bracher F. How to separate kinase inhibition from undesired monoamine oxidase a inhibition—The development of the DYRK1A inhibitor AnnH75 from the Alkaloid Harmine. Molecules. 2020 Dec 16;25(24):5962.

Pustelny K, Grygier P, Barzowska A, Pucelik B, Matsuda A, Mrowiec K, Slugocka E, Popowicz GM, Dubin G, Czarna A. Binding mechanism and biological effects of flavone DYRK1A inhibitors for the design of new antidiabetics. Scientific reports. 2023 Oct 23;13(1):18114.

Chen Q, Chao R, Chen H, Hou X, Yan H, Zhou S, Peng W, Xu A. Antitumor and neurotoxic effects of novel harmine derivatives and structure‐activity relationship analysis. International Journal of Cancer. 2005 May 1;114(5):675-82.

Yonezawa T, Hasegawa SI, Asai M, Ninomiya T, Sasaki T, Cha BY, Teruya T, Ozawa H, Yagasaki K, Nagai K, Woo JT. Harmine, a β-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. European journal of pharmacology. 2011 Jan 15;650(2-3):511-8.

SRS Mota N, R. Kviecinski M, B. Felipe K, MAS Grinevicius V, Siminski T, M. Almeida G, C. Zeferino R, T. Pich C, W. Filho D, C. Pedrosa R. β-carboline alkaloid harmine induces DNA damage and triggers apoptosis by a mitochondrial pathway: study in silico, in vitro and in vivo. International Journal of Functional Nutrition. 2020 Sep;1(1):1.

Jiang N, Chen L, Li J, Li W, Jiang S. Lethal and sublethal toxicity of beta-carboline alkaloids from Peganum harmala (L.) against aedes albopictus larvae (Diptera: Culicidae). Toxics. 2023 Apr 3;11(4):341.

Rezzagui A, Merghem M, Derafa I, Dahamna S. Acute and sub-acute toxic effects of Algerian Peganum harmala L. crud extract. Journal of Drug Delivery and Therapeutics. 2020 Mar 15;10(2):115-21.

Walvekar MV, Jadhav NA, Daunde JA, Potphode ND, Desai SS. Trigonelline: An Emerging Paradigm for Effective Therapy in Diabetes Mellitus. Journal of Endocrinology and Reproduction. 2023 May 12:15-28.

Chen C, Shi Y, Ma J, Chen Z, Zhang M, Zhao Y. Trigonelline reverses high glucose-induced proliferation, fibrosis of mesangial cells via modulation of Wnt signaling pathway. Diabetology & Metabolic Syndrome. 2022 Feb 9;14(1):28.

Nguyen V, Taine EG, Meng D, Cui T, Tan W. Pharmacological Activities, Therapeutic Effects, and Mechanistic Actions of Trigonelline. International Journal of Molecular Sciences. 2024 Mar 16;25(6):3385.

Li M, Li S, Jiang S, Li W. The Hepatoprotective Effect of Trigonelline in Diabetic Rat Through Insulin-related IRS1-GLUT2 Pathway: A Biochemical, Molecular, Histopathological, and Immunohistochemical Study. Pharmacognosy Magazine. 2024 May 13:09731296241247365.

Chen C, Ma J, Miao CS, Zhang H, Zhang M, Cao X, Shi Y. Trigonelline induces autophagy to protect mesangial cells in response to high glucose via activating the miR-5189-5p-AMPK pathway. Phytomedicine. 2021 Nov 1;92:153614.

Tanveer MA, Rashid H, Nazir LA, Archoo S, Shahid NH, Ragni G, Umar SA, Tasduq SA. Trigonelline, a plant derived alkaloid prevents ultraviolet-B-induced oxidative DNA damage in primary human dermal fibroblasts and BALB/c mice via modulation of phosphoinositide 3-kinase-Akt-Nrf2 signaling axis. Experimental Gerontology. 2023 Jan 1;171:112028.

Sekhar MG, Shanmugam KR, Chakrapani IS. Trigonelline, a Fenugreek Bioactive protects Heart tissue against alcohol intoxication: An in-vivo study focusing on antioxidant perspective. Journal of Ayurveda and Integrative Medicine. 2024 Jul 1;15(4):100963.

Folwarczna J, Janas A, Pytlik M, Cegieła U, Śliwiński L, Krivošíková Z, Štefíková K, Gajdoš M. Effects of trigonelline, an alkaloid present in coffee, on diabetes-induced disorders in the rat skeletal system. Nutrients. 2016 Mar 2;8(3):133.

Peerapen P, Boonmark W, Chantarasaka S, Thongboonkerd V. Trigonelline prevents high-glucose-induced endothelial-to-mesenchymal transition, oxidative stress, mitochondrial dysfunction, and impaired angiogenic activity in human endothelial EA. hy926 cells. Biomedicine & Pharmacotherapy. 2024 Oct 1;179:117320.

Kabiri-Samani N, Amini-Khoei H, Rahimi-Madiseh M, Sureda A, Lorigooini Z. Trigonelline as an anticonvulsant agent: mechanistic insights into NMDA receptor expression and oxidative stress balance. Scientific Reports. 2024 Jun 20;14(1):14239.

Singh S, Chaurasia PK, Bharati SL. Hypoglycemic and hypocholesterolemic properties of Fenugreek: A comprehensive assessment. Applied Food Research. 2023 Dec 1;3(2):100311.

Li Y, Li Q, Wang C, Lou Z, Li Q. Trigonelline reduced diabetic nephropathy and insulin resistance in type 2 diabetic rats through peroxisome proliferator activated receptor γ. Experimental and Therapeutic Medicine. 2019 Aug 1;18(2):1331-7.

Yoshinari O, Igarashi K. Anti-diabetic effect of trigonelline and nicotinic acid, on KK-Ay mice. Current Medicinal Chemistry. 2010 Jul 1;17(20):2196-202.

Perchat N, Saaidi PL, Darii E, Pellé C, Petit JL, Besnard-Gonnet M, de Berardinis V, Dupont M, Gimbernat A, Salanoubat M, Fischer C. Elucidation of the trigonelline degradation pathway reveals previously undescribed enzymes and metabolites. Proceedings of the National Academy of Sciences. 2018 May 8;115(19):E4358-67.

Konstantinidis N, Franke H, Schwarz S, Lachenmeier DW. Risk assessment of trigonelline in coffee and coffee by-products. Molecules. 2023 Apr 14;28(8):3460.

Zhang W, Zhang Y, Chen S, Zhang H, Yuan M, Xiao L, Lu Y, Xu H. Trigonelline, an alkaloid from Leonurus japonicus Houtt., suppresses mast cell activation and OVA-induced allergic asthma. Frontiers in Pharmacology. 2021 Aug 4;12:687970.

Membrez M, Migliavacca E, Christen S, Yaku K, Trieu J, Lee AK, Morandini F, Giner MP, Stiner J, Makarov MV, Garratt ES. Trigonelline is an NAD+ precursor that improves muscle function during ageing and is reduced in human sarcopenia. Nature metabolism. 2024 Mar;6(3):433-47.

Huang Y, Li X, Zhang X, Tang J. Oxymatrine ameliorates memory impairment in diabetic rats by regulating oxidative stress and apoptosis: involvement of NOX2/NOX4. Oxidative medicine and cellular longevity. 2020;2020(1):3912173.

Huang Y, He B, Song C, Long X, He J, Huang Y, Liu L. Oxymatrine ameliorates myocardial injury by inhibiting oxidative stress and apoptosis via the Nrf2/HO-1 and JAK/STAT pathways in type 2 diabetic rats. BMC Complementary Medicine and Therapies. 2023 Jan 3;23(1):2.

Lou D, Fang Q, He Y, Ma R, Wang X, Li H, Qi M. Oxymatrine alleviates high-fat diet/streptozotocin-induced non-alcoholic fatty liver disease in C57BL/6 J mice by modulating oxidative stress, inflammation and fibrosis. Biomedicine & Pharmacotherapy. 2024 May 1;174:116491.

Shalaby AM, Aboregela AM, Alabiad MA, Tayssir Sadek M. The effect of induced diabetes mellitus on the cerebellar cortex of adult male rat and the possible protective role of oxymatrine: a histological, immunohistochemical and biochemical study. Ultrastructural Pathology. 2021 May 4;45(3):182-96.

Zhang X, Jiang W, Zhou AL, Zhao M, Jiang DR. Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3β signaling pathway. World Journal of Gastroenterology. 2017 Jun 7;23(21):3839.

Wang SB, Jia JP. Oxymatrine attenuates diabetes-associated cognitive deficits in rats. Acta pharmacologica sinica. 2014 Mar;35(3):331-8.

Seksaria S, Mehan S, Dutta BJ, Gupta GD, Singh A. Therapeutic potential of oxymatrine in impeding the cardiomyopathy in the STZ-nicotinamide induced diabetes through SIRT1/Nrf2 signaling activation.

Zhu YX, Hu HQ, Zuo ML, Mao L, Song GL, Li TM, Dong LC, Yang ZB, Ali Sheikh MS. Effect of oxymatrine on liver gluconeogenesis is associated with the regulation of PEPCK and G6Pase expression and AKT phosphorylation. Biomedical reports. 2021 Jul;15(1):56.

Zhang X, Ge J, Zhu X, Zhang H, Wang Y, Xu T, Jiang W, Zhang B. Effects and mechanism of oxymatrine combined with compound Yinchen granules on the apoptosis of hepatocytes through the Akt/FoxO3a/Bim pathway. BioMed research international. 2022;2022(1):8644356.

Nong Y, Qin H, Wei L, Wei X, Lv J, Huang X, Wu B. Oxymatrine Inhibits PD-L1 by Downregulating IFN-γ to Promote Ferroptosis and Enhance Anti-PD-L1 Efficacy in Liver Cancer. Journal of Hepatocellular Carcinoma. 2024 Dec 31:2427-40.

Liu W, Shi J, Zhu L, Dong L, Luo F, Zhao M, Wang Y, Hu M, Lu L, Liu Z. Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4. Drug design, development and therapy. 2015 Oct 30:5771-83.

Dong PL, Li Z, Teng CL, Yin X, Cao XK, Han H. Synthesis and evolution of neuroprotective effects of oxymatrine derivatives as anti‐Alzheimer’s disease agents. Chemical Biology & Drug Design. 2021 Jul;98(1):175-81.

Mao J, Hu Y, Zhou A, Zheng B, Liu Y, Du Y, Li J, Lu J, Zhou P. Oxymatrine reduces neuroinflammation in rat brain: A signaling pathway:/1. Neural Regeneration Research. 2012 Oct 25;7(30):2333-9.

Daungsupawong H, Wiwanitkit V. Re: Modified Oxymatrine as Novel Therapeutic Inhibitors Against Monkeypox and Marburg Virus Through Computational Drug Design Approaches. Journal of Cellular and Molecular Medicine. 2024 Dec 4;28(23):e70266.

Zhang X, Shi J, Lu Y, Ji R, Guan Z, Peng F, Zhao C, Gao W, Gao F. Mechanism of oxymatrine in the treatment of cryptosporidiosis through TNF/NF-κB signaling pathway based on network pharmacology and experimental validation. Scientific Reports. 2024 Jun 24;14(1):14469.

Fischer BC, Musengi Y, König J, Sachse B, Hessel-Pras S, Schäfer B, Kneuer C, Herrmann K. Matrine and Oxymatrine: evaluating the gene mutation potential using in silico tools and the bacterial reverse mutation assay (Ames test). Mutagenesis. 2024 Jan 1;39(1):32-42.

Gu Y, Lu J, Sun W, Jin R, Ohira T, Zhang Z, Tian X. Oxymatrine and its metabolite matrine contribute to the hepatotoxicity induced by radix Sophorae tonkinensis in mice. Experimental and Therapeutic Medicine. 2019 Apr;17(4):2519-28.

Karaca M, Erbaş O. Solanine Poisoning: Effects, Risks, and Management Strategies. Journal of Experimental and Basic Medical Sciences. 2024;5(2):189-93.

Al-Ashaala HA, Farghaly AA, Abdel-Samee NS. Antidiabetic efficacy of Solanum torvum extract and glycoalkaloids against diabetes induced mutation in experimental animals. Journal of Pharmaceutical Sciences and Research. 2018 Jun 1;10(6):1323-31.

Jan S, Iram S, Bashir O, Shah SN, Kamal MA, Rahman S, Kim J, Jan AT. Unleashed Treasures of Solanaceae: Mechanistic Insights into Phytochemicals with Therapeutic Potential for Combatting Human Diseases. Plants. 2024 Mar 4;13(5):724.

Senizza B, Rocchetti G, Sinan KI, Zengin G, Mahomoodally MF, Glamocilja J, Sokovic M, Lobine D, Etienne OK, Lucini L. The phenolic and alkaloid profiles of Solanum erianthum and Solanum torvum modulated their biological properties. Food Bioscience. 2021 Jun 1;41:100974.

Borsoi FT, Pastore GM, Arruda HS. Health Benefits of the Alkaloids from Lobeira (Solanum lycocarpum St. Hill): A Comprehensive Review. Plants. 2024 May 17;13(10):1396.

Nandi S, Sikder R, Nag A, Khatua S, Sen S, Chakraborty N, Naskar A, Zhakipbekov K, Acharya K, Habtemariam S, Arslan Ateşşahin D. Updated aspects of alpha‐Solanine as a potential anticancer agent: Mechanistic insights and future directions. Food Science & Nutrition. 2024 Oct;12(10):7088-107.

Hasanain M, Bhattacharjee A, Pandey P, Ashraf R, Singh N, Sharma S, Vishwakarma AL, Datta D, Mitra K, Sarkar J. α-Solanine induces ROS-mediated autophagy through activation of endoplasmic reticulum stress and inhibition of Akt/mTOR pathway. Cell Death & Disease. 2015 Aug;6(8):e1860-.

Saleh BH, Salman MD, Salman AD, Alardhi SM, Mohammed MM, Gyurika IG, Le PC, Ali OI. In silico analysis of the use of solanine derivatives as a treatment for Alzheimer's disease. Heliyon. 2024 Jun 15;10(11).

Gao SY, Wang QJ, Ji YB. Effect of solanine on the membrane potential of mitochondria in HepG2 cells and [Ca2+] i in the cells. World Journal of Gastroenterology: WJG. 2006 Jun 7;12(21):3359.

Okada K, Matsuo K. Development of new antibodies and an ELISA system to detect the potato alkaloids α-Solanine and α-Chaconine. Foods. 2023 Apr 12;12(8):1621.

Ordóñez-Vásquez A, Aguirre-Arzola V, Garza-Ramos MD, Urrutia-Baca VH, Suarez-Obando F. Toxicity, teratogenicity and anti-cancer activity of α-solanine: a perspective on anti-cancer potential.

Al Masaoud FS, Alharbi A, Behir MM, Siddiqui AF, Al-Murayeh LM, Al Dail A, Siddiqui R. A challenging case of suspected solanine toxicity in an eleven-year-old Saudi boy. Journal of Family Medicine and Primary Care. 2022 Jul 1;11(7):4039-41.

Published

30-09-2025
Statistics
Abstract Display: 20
Dimension Badge

How to Cite

“Alkaloids – Bridging Natural Products in Antidiabetic Therapy”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 5, Sept. 2025, https://doi.org/10.25004/.

Issue

Section

Review Article

How to Cite

“Alkaloids – Bridging Natural Products in Antidiabetic Therapy”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 17, no. 5, Sept. 2025, https://doi.org/10.25004/.