Microarray data analysis, structure prediction and in silico docking of drugs for inhibiting the over expression of High Mobility Group A1 in human malignant neoplasias
Abstract
The High Mobility Group A1 (HMGA1) gene over expression has been widely observed in various types of cancers. The raw data for microarray data analysis was obtained from the dataset record GDS3525. The SOM and K-means of the Genesis led to the identification of two clusters (each consisting of 30 genes) bearing HMGA1 gene. This on further analysis resulted into identification of 14 similar genes by Easy M-A. The evolutionary similarity of HMGA1 and GORASP2 is clearly observed in the Phylogenetic Tree. Due to the absence of precise structures, the homology modeling was done by using EasyModeller and the resulting models of proteins HMGA1 and GORASP2 were validated by Ramachandran plot. These models were further put to loop optimization by Modloop and the output models were assessed by Ramachandran plot (Rampage) and through SAVS (Procheck). The molecular docking was done by using Autodock, this resulted in two ligands, DB11641 (Vinflunine) and DB12674 (Lurbinectedin), showing potential for the effective treatment of various types of cancers characterized by the over expression of HMGA1 and GORASP2.
Keywords:
High Mobility Group A Proteins; homology modeling; microarray data analysis; molecular dockingDOI
https://doi.org/10.25004/IJPSDR.2020.120504References
Shahjaman M, Kumar N, Mollah MMH, Ahmed MS, Ara Begum A, Shahinul Islam SM, Mollah MNH. Robust significance analysis of microarrays by minimum β-divergence method. Biomed Res Int. 2017; 2017:5310198.
Fujita A, Sato JR, Rodrigues LdeO, Ferreira CE, Sogayar MC. Evaluating different methods of microarray data normalization. BMC Bioinformatics. 2006; 7:469.
Shen P, Hour A, Liu LD. Microarray meta-analysis to explore abiotic stress-specific gene expression patterns in Arabidopsis. Bot Stud. 2017; 58(1):22.
Xu Z, Huang L, Zhang H, Li Y, Guo S, Wang N, Wang SH, Chen Z, Weng J, Tao SC. PMD: A resource for archiving and analyzing protein microarray data. Sci Rep. 2016; 6:19956.
Conte A, Paladino S, Bianco G, Fasano D, Gerlini R, Tornincasa M, Renna M, Fusco A, Tramontano D, Pierantoni GM. High mobility group A1 protein modulates autophagy in cancer cells. Cell Death Differ. 2017; 24(11):1948-1962.
D’Angelo D, Mussnich P, Rosa R, Bianco R, Tortora G, Fusco A. High mobility group A1 protein expression reduces the sensitivity of colon and thyroid cancer cells to antineoplastic drugs. BMC Cancer. 2014; 14:851.
Hillion J, Roy S, Heydarian M, Cope L, Xian L, Koo M, Luo LZ, Kellyn K, Ronnett BM, Huso T, Armstrong D, Reddy K, Huso DL, Resar LMS. The high mobility group A1 (HMGA1) gene is highly overexpressed in human uterine serous carcinomas and carcinosarcomas and drives matrix metalloproteinase-2 (MMP-2) in a subset of tumors. Gynecol Oncol. 2016; 141(3):580-587.
Jun KH, Jung JH, Choi HJ, Shin EY, Chin HM. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer. Int J Surg. 2015; 24(PtA):39-44.
Palumbo Junior A, de Sousa VPL, Esposito F, De Martino M, Forzati F, Moreira FCB, Simao TA, Nasciutti LE, Fusco A, Ribeiro Pinto LF, Bessa Pereira Chaves C, Meireles Da Costa N. Overexpression of HMGA1 figures as a potential prognostic factor in endometrioid endometrial carcinoma (EEC). Genes (Basel). 2019; 10(5). pii: E372.
Liu J, Mi B, Wang Y, Shi C, Mi X, Lu Y, Yu P. miR-26a suppresses osteosarcoma migration and invasion by directly targeting HMGA1. Oncol Lett. 2018; 15(6):8303-8310.
Resar LM. The high mobility group A1 gene: transforming inflammatory signals into cancer. Cancer Res. 2010; 70(2):436-439.
Sumter TF, Xian L, Huso T, Koo M, Chang YT, Almasri TN, Chia L, Inglis C, Reid D, Resar LM. The high mobility group A1 (HMGA1) transcriptome in cancer and development. Curr Mol Med. 2016; 16(4):353-393.
Wang Y, Hu L, Zheng Y, Guo L. HMGA1 in cancer: cancer classification by location. J Cell Mol Med. 2019; 23(4):2293-2302.
Greco M, Arcidiacono B, Chiefari E, Vitagliano T, Ciriaco AG, Brunetti FS, Cuda G, Brunetti A. HMGA1 and MMP-11 are overexpressed in human non-melanoma skin cancer. Anticancer Res. 2018; 38(2):771-778.
Masciullo V, Baldassarre G, Pentimalli F, Berlingieri MT, Boccia A, Chiappetta G, Palazzo J, Manfioletti G, Giancotti V, Viglietto G, Scambia G, Fusco A. HMGA1 protein over-expression is a frequent feature of epithelial ovarian carcinomas. Carcinogenesis. 2003; 24(7):1191-1198.
Devgan M. Structure prediction and in-silico designing of drugs against fork head-box R2 protein. Res J Pharm Technol. 2018; 11(3):913-920.
Devgan M. Structure prediction and in silico designing of drugs against kallikrein protein 12. Int J Curr Pharm Res. 2017; 9(2):64-69.
Devgan M. Structure prediction and in-silico designing of drugs against homeobox C8 protein. J Chem Pharm Res. 2016; 8(3):891-899.
Devgan M, Karar PK, Agarwal G, Mohan A, Gangwar P. In silico designing of drugs for the inhibition of AMF-HER2 complex in trastuzumab resistant breast cancer. Indian J Biotechnol. 2016; 15(3):292-298.
Devgan M. Structure prediction and insilico designing of drugs for the inhibition of EPH A10 tyrosine kinase receptor protein. Acta Biomedica Scientia. 2016; 3(2):86-94.
Devgan M. Homology modeling and molecular docking studies of DNA replication licensing factor minichromosome maintenance protein 5 (MCM5). Asian J Pharm Tech. 2015; 5(1):17-22.
Shatabda S, Newton MA, Rashid MA, Pham DN, Sattar A. The road not taken: retreat and diverge in local search for simplified protein structure prediction. BMC Bioinformatics. 2013; 14(suppl2):S19.
Petrey D, Honig B. Protein structure prediction: inroads to biology. Mol Cell. 2005; 20(6):811-819.
Khor BY, Tye GJ, Lim TS, Choong YS. General overview on structure prediction of twilight-zone proteins. Theor Biol Med Model. 2015; 12:15.
Barrett T, Edgar R. Gene expression omnibus (GEO): microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 2006; 411:352-369.
Barrett T, Suzek TO, Troup DB, Wilhite SE, Ngau WC, Ledoux P, Rudnev D, Lash AE, Fujibuchi W, Edgar R. NCBI GEO: mining millions of expression profiles-database and tools. Nucleic Acids Res. 2005; 33(Database issue):D562-566.
Lutgendorf SK, DeGeest K, Sung CY, Arevalo JM, Penedo F, Lucci J 3rd, Goodheart M, Lubaroff D, Farley DM, Sood AK, Cole SW. Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain Behav Immun. 2009; 23(2):176-183.
Cole SW, Arevalo JM, Takahashi R, Sloan EK, Lutgendorf SK, Sood AK, Sheridan JF, Seeman TE. Computational identification of gene-social environment interaction at the human IL6 locus.
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002; 18(1):207-208.
Wang J, Delabie J, Aasheim H, Smeland E, Myklebost O. Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinformatics.2002; 3:36.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731-2739.
National Center for Biotechnology Information [Internet]. Bethesda (MD): National Library of Medicine (US); GORASP2 golgi reassembly stacking protein 2 [Homo sapiens (human)] [updated 2019 Oct 12; cited 2019 Nov 17]; [About 10 p.].
Wikipedia contributors. FASTA format [Internet]. Wikipedia, The Free Encyclopedia; 2019 Dec 13, 08:26 UTC [cited 2020 Mar 14].
National Center for Biotechnology Information [Internet]. Bethesda (MD): National Library of Medicine (US); HMGA1 protein [Homo sapiens] [cited 2019 June 19]; [About 2 p.].
National Center for Biotechnology Information [Internet]. Bethesda (MD): National Library of Medicine (US); Golgi reassembly stacking protein 2, 55kDa [Homo sapiens] [cited 2019 June 19]; [About 2 p.].
Wikipedia contributors. BLAST (biotechnology) [Internet]. Wikipedia, The Free Encyclopedia; 2020 Mar 8, 18:23 UTC [cited 2020 Mar 14].
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015; 10(6):845-858.
Kelly L, Sternberg M. Phyre2 [Internet]. South Kensington Campus (London): Structural Bioinformatics Group, Imperial College (UK); [cited 2019 June 20].
Research Collaboratory for Structural Bioinformatics. RCSB Protein Data Bank [Internet]. New Jersey, California: Rutgers, UCSanDiego (US); [cited 2019 June 20].
Kuntal BK. EasyModeller (Version 2.0) [Internet]. Hyderabad: Kuntal Kumar Bhusan, University of Hyderabad (India); [cited 2019 June 21].
Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997, 18(15):2714-2723.
Procedure [Internet]. Powai (Mumbai): Department of Biosciences and Bioengineering, Indian Institute of Technology; [cited 2019 June 21].
Bakker PD, Lovell S. Rampage [Internet]. Cambridge (UK): Department of Biochemistry, University of Cambridge. [Cited 2019 June 21].
NIH MBI Laboratory for Structural Genomics and Proteomics. Structural Analysis and Verification Server (Version 5). UCLA MBI-SAVES web server [cited 2019 June 21].
Fiser A. ModLoop [Internet]. San Franscisco (CA): University of California (USA); [cited 2019 June 22].
D’Angelo D, Borbone E, Palmieri D, Uboldi S, Esposito F, Frapolli R, Pacelli R, D’Incalci M, Fusco A. The impairment of the high mobility group A (HMGA1) protein function contributes to the anticancer activity of trabectedin. Eur J Cancer. 2013; 49(5):1142-1151.
Wishart DS. DrugBank [Internet]. Canada: Canadian Institutes of Health Research, Alberta Innovates-Health Solutions, The Metabolomics Innovation Centre; [cited 2019 June 22].
Zinc12 [Internet]. San Francisco (California): Shoichet Laboratory, Department of Pharmaceutical Chemistry, University of California, San Francisco. [cited 2019 June 22].
National Center for Biotechnology Information [Internet]. Bethesda (MD): National Library of Medicine (US); PubMed [cited 2019 June 22].
Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008; 443:365-382.
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2):455-461.
Published

