Visible Light Promoted Catalyst Free, the Sustainable Synthesis of Dihydropyrano [2,3-C] Pyrazoles and Docking Studies with COVID-19 Mpro
Abstract
A highly efficient, simple, cost effective, and eco-friendly protocol has been developed for synthesis of dihydropyrano[2,3-c]pyrazoles via one-pot, three-component condensation of 3-methyl-1-phenyl-2-pyrazoline-5-one, malononitrile, substituted aromatic aldehydes under visible light irradiation in catalyst-free condition at room temperature. The main advantage of this methodology is good to excellent yield, simple work-up procedure, mild and clean reaction conditions, no chromatographic separation, environmentally benign reaction conditions, and catalyst free, the application of clean visible-light as a source of energy. The synthesized compounds are screened in silico with 6LU7, which is a COVID-19 Mpro. Compound 4i and nitro group compounds 4d, 4e, 4f are showing strong correlation at the active center of 6LU7. So, it is predicted that these compounds may be useful for COVID-19 patients.
Keywords:
Heterocyclic compounds, catalyst free, visible light, dihydropyrano[2,3-c]pyrazoles, 3-methyl-1-phenyl-2-pyrazoline-5-one, COVID-19, 6LU7.DOI
https://doi.org/10.25004/IJPSDR.2021.130101References
Anastas PT, Kirchhoff MM. Origins, Current Status, and Future Challenges of Green Chemistry. Acc Chem Res. 2002;35(9):686−694.
Baird C. Environmental Chemistry, 2nd Edition. W.H. Freeman and Company, New York, 1999.
Anastas P, Heine LG, Williamson TC. Green Chemical Syntheses and Processes. Oxford University Press, New York, 2000.
Matlack AS. Introduction to Green Chemistry. Marcel Dekker, New York. 2001.
Lancaster M. Green Chemistry: An Introductory Text. Royal Society of Chemistry, Cambridge, UK, 2002.
Anastas PT. Warner JC. Green Chemistry, Theory and Practice. Oxford University Press, Oxford, UK, 1998.
Lancaster M. Handbook of Green Chemistry and Technology. Blackwell Publishing, Abingdon, 2002.
Bruckmann A, Krebs A, Bolm C. Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem. 2008;10:1131−1141.
Horvath IT. Solvents from nature. Green Chem. 2008;10:1024−1028.
Crabtree RH, Anastas PT. Handbook of Green Chemistry. Plat Metals Rev. 2010;54(4):233–238.
Ghosh PP, Paul S, Das AR. Light induced synthesis of symmetrical and unsymmetrical dihydropyridines in ethyl lactate-water under tunable conditions. Tetrahedron Lett. 2013;54(2):138−142.
Rai P, Rahila, Sagir H, Siddiqui IR. Visible light and aqueous ethanol synergy: an efficient one-pot route for the synthesis of spiropyran derivatives. Chemistry Select. 2016;1:4550−4553.
Ciamician G. T he photochemist r y of t he f ut ure. Science. 1912;36(926):385–394.
Chen JR, Hu XQ, Lu LQ, Xiao WJ. Exploration of visible-light photocatalysis in heterocycle synthesis and functionalization: reaction design and beyond. Acc Chem Res. 2016;49(9):1911−1923.
L a ng X J, C hen X D, Z hao JC . Het erogeneou s v isible lig ht photocatalysis for selective organic transformations. Chem Soc Rev. 2014;43:473−486.
Balzani V, Bergamini G, Ceroni P. Light: A very peculiar reactant and product. Angew Chem Int Ed. 2015;54(39):11320−11337.
Kappe CO. High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol. 2002;6(3):314−320.
Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Strategies for Heterocyclic Construction via Novel Multicomponent Reactions Based on Isocyanides and Nucleophilic Carbenes. Acc Chem Res. 2003;36(12):899−907.
Ramó nDJ, Yus M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed. 2005;44:1602−1634.
Do ̈m l i ng A . Re c ent Development s i n I soc y a n ide B a se d Multicomponent Reactions in Applied Chemistry. Chem Rev. 2006;106(1):17−89.
Benetti S, Romagnoli R, De Risi C, Spalluto G, Zanirato V. Mastering β-Keto Esters. Chem Rev. 1995;95(4):1065−1114.
Langer P. Regio- and Diastereoselective Cyclization Reactions of Free and Masked 1,3-Dicarbonyl Dianions with 1,2-Dielectrophiles. Chem Eur J. 2001;7(18):3858−3866.
Langer P. Cyclization Reactions of 1,3-Bis-Silyl Enol Ethers and Related Masked Dianions. Synthesis. 2002;04:441−459.
Simon C, Constantieux T, Rodriguez J. Utilisation of 1,3-Dicarbonyl Derivatives in Multicomponent Reactions. Eur J Org Chem. 2004;4957−4980.
Alvim HGO, Correa JR, Assumpcao JAF, Da Silva WA, Rodrigues MO, De Macedo JL, Fioramonte M, Gozzo FC, Gatto CC, Neto BAD. Heteropolyacid-Containing Ionic Liquid-Catalyzed Multicomponent Synthesis of Bridgehead Nitrogen Heterocycles: Mechanisms and Mitochondrial Staining. J Org Chem. 2018;83(7):4044–4053.
Toure BB, Hall DG. Natural product synthesis using multicomponent reaction strategies. Chem Rev. 2009;109(9):4439–4486.
Ramon DJ, Yus M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed. 2005;44(11):1602–1634.
Hatokeyama S, Ochi N, Numata H, Takano S. A new route to substituted 3-methoxycarbonyldihydropyrans; enantioselective synthesis of (–)- methyl elenolate. J Chem Soc Chem Commun. 1988;17:1202-1204.
Eiden F, Denk F. Synthesis of CNS-activity of pyran derivatives: 6,8-dioxabicyclo(3,2,1)octane. Arch Pharm. 1991;324(6):353-354.
Zonouz AM, Moghani D, Okhravi S. A facile and efficient protocol for the synthesis of 2-amino-3-cyano-4H-pyran derivatives at ambient temperature. Curr Chemistry Lett. 2014;3(2):71-74.
Hyama T, Saimoto H. Jpn. KoKai Tokkyo Koho, JP 62181276. 1987. [Chem. Abstr. 1988, 108:37645p].
Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA. 2000;97(13):7124-7129.
Witte EC, Neubert P, Roesoh A. Ger Offen DE3427985. 1986. [Chem. Abstr. 1986, 104:224915f].
Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, Weston H, Scicinski J, Merritt A, Whittington A, Wyatt P, Taylor N, Green D, Bethell R, Madar S, Fenton RJ, Morley PJ, Pateman T, Beresford A. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem. 1998;41(6):787-797.
Zaki ME, Soliman HA, Hiekal OA, Rashad AE. Pyrazolopyranopy¬rimidines as a class of anti-inflammatory agents. Z. Naturforsch C Biosci. 2006;61(1):1-5.
Foloppe N, Fisher LM, Howes R, Potter A, Robertson AG, Surgenor AE. Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg Med Chem. 2006;14(14): 4792-4802.
Saundane AR, Walmik P, Yarlakatti M, Katkar V, Vaijinath A. Verma. Synthesis and Biological Activities of Some New Annulated Pyrazolopyranopyrimidines and Their Derivatives Containing Indole Nucleus. J Heterocyclic Chem. 2014;51(2):303-314.
Magda MF, Ismail, Khalifa NM, Fahmy HH, Nossier ES, Abdullad MM. Design, Docking, and Synthesis of Some New Pyrazoline and Pyranopyrazole Derivatives as Anti-inflammatory Agents. J Heterocyclic Chem. 2014;51(2):450-458.
Ambethkar S, Padmini V, Bhuvanesh N. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. J Advan Res. 2015;6(6):975-985.
Mohamed NR, Khaireldina NY, Fahmyb AF, El-Sayed AA. Facile synthesis of fused nitrogen containing heterocycles as anticancer agents. Der Pharma Chemica. 2010;2(1):400-417.
Myrboh B, Mecadon H, Rohman R, Rajbangshi M, Kharkongor I, Laloo BM, Kharbangar I, Kshiar B. Synthetic Developments in Functionalized Pyrano[2,3-c]pyrazoles. A Review. Org Prep Proced Int. 2013;45:253–303.
Das D, Banerjee R, Mitra A. Bioactive and pharmacologically important pyrano[2,3-c]pyrazoles. J Chem and Pharma Res. 2014;6(11):108-116.
Yan C, Theodorescu D, Miller B, Kumar A, Kumar V, Ross D, Wempe MF. Synthesis of novel Ral inhibitors: An in vitro and in vivo study. Bioorg & Med Chem Lett. 2016;26:5815–5818.
Peng Y, Song G, Dou R. Surface cleaning under combined microwave and ultrasound irradiation: flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media. Green. Chem. 2006;8:573-575.
Yu J, Wang H. Green Synthesis of Pyrano[2,3‐d]‐pyrimidine Derivatives in Ionic Liquids. Synth Commun. 2005;35:3133-3140.
Safari E, Hasaninejad A. One‐pot, Multi‐Component Synthesis of Novel Bis‐Spiro Pyranopyrazole Derivatives in the Presence of DABCO as an Efficient and Reusable Solid Base Catalyst. Chemistry Select. 2018;3(12):3529-3533.
Babaie M, Sheibani H. Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction. Arab J Chem. 2011;4(2):159-162.
Vasyun’kina TN, Bykova LM, Plotkin VN, Ramsh SM. Synthesis of 1,4-Dihydropyrano[2,3-c]pyrazole Derivatives. Russ J Org Chem. 2005;41:742-744.
Maddila S, Rana S, Pagadala R, Kankala S, Maddila S, Jonnalagadda SB. Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst. Catal Commun. 2015;61:26-30.
Dalal KS, Tayade YA, Wagh YB, Trivedi DR, Dalal DS, Chaudhari BL. Bovine serum albumin catalyzed one-pot, three-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives in aqueous ethanol. RSC Adv. 2016;6:14868-14869.
Siddekha A, Nizam A, Pasha MA. An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4'-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4- dihydropyrano[2,3- c]pyrazole using density functional theory. Spectrochem Acta A. 2011;81(1):431-440.
Heravi MM, Ghods A, Derikvand F, Bakhtiari K, Bamoharram FF. H14[NaP5W30O110] catalyzed one-pot three-component synthesis of dihydropyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine derivatives. J Iran Chem Soc. 2010;7:615-620.
Karimi-Jaberi Z, ReyazoShams MM. Trichloroacetic acid as a solid heterogeneous cat alyst for t he rapid sy nt hesis of dihydropyrano[2,3- c]pyrazoles under solvent-free conditions. Heterocycl Commun. 2011;17:177-179.
Guo SB, Wang SX, Li JT. D,L‐Proline‐Catalyzed One‐Pot Synthesis of Pyrans and Pyrano[2,3‐c]pyrazole Derivatives by a Grinding Method under Solvent‐Free Conditions. Synth Commun. 2007;37:2111-2120.
Gogoi S, Zhao CG. Organocatalyzed enantioselective synthesis of 6-amino-5-cyanodihydropyrano[2,3-c]pyrazoles. Tetrahedron Lett. 2009;50(19):2252-2255.
Tahmassebi D, Blevins JE, Gerardot SS. Zn(L‐proline)2 as an efficient and reusable catalyst for the Multi-component synthesis of pyran‐annulated heterocyclic compounds. Appl Organometal Chem. 2019;33:e4807.
Shi D, Mou J, Zhuang Q, Niu L, Wu N, Wang X. Three-Component One-Pot Sy nthesis of 1,4-Dihydro- py rano[2,3-c]py razole Derivatives in Aqueous Media. Synth Commun. 2004;34(24):4557- 4563.
Nazari S, Keshavarz M. Amberlite-Supported L-Prolinate: A Novel Heterogeneous Organocatalyst for the Three-Component Synthesis of 4H-Pyrano[2,3-c]pyrazole Derivatives. Russ J Gen Chem. 2017;87(3):539–545.
Mandha SR, Siliveri S, Alla M, Bommena VR, Bommineni MR, Balasubramanian S. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorg & Med Chem Lett. 2012;22:5272–5278.
Zolfigol MA, Navazeni M, Yarie M, Ayazi‐Nasrabadi R. Application of a biological‐based nanomagnetic catalyst in the synthesis of bis‐pyrazols and pyrano[3,2‐c]pyrazoles. Appl Organomet Chem. 2017;31:e3633.
Hamrahian SA, Salehzadeh S, Rakhtshah J, Babaei FH, Karami N. Preparation, characterization and catalytic application of molybdenum Schiff‐base complex immobilized on silica‐coated Fe3O4 as a reusable catalyst for the synthesis of pyranopyrazole derivatives. Appl Organomet Chem. 2019;33:e4723.
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care. 2020;57:279-283.
Published

