Anti-diabetic Potential of Extract Obtained from Parkia biglandulosa (mimosaceae) Stems Bark using Alloxan Induced Diabetes Model

Authors

  • Rohini C. Kolhe T.V.E.S. Hon. Loksevak Madhukarrao Chaudhari College of Pharmacy, District- Jalgaon, Maharashtra-425503, India
  • Rajesh Y. Chaudhari T.V.E.S. Hon. Loksevak Madhukarrao Chaudhari College of Pharmacy, District- Jalgaon, Maharashtra-425503, India
  • Vijay R. Patil T.V.E.S. Hon. Loksevak Madhukarrao Chaudhari College of Pharmacy, District- Jalgaon, Maharashtra-425503, India

Abstract

Diabetes mellitus is a chronic metabolic disorder that places a huge health and economic burden on societies. Since currently available medications have many drawbacks, it is important to seek alternative therapies. Medicinal plants used in traditional medicine are ideal candidates. Therefore, this study was carried out to investigate the anti-diabetic activity of the stem bark extract of Parkia biglandulosa (mimosaceae) in wister rats. The phytochemical composition of the stem bark extract was qualitatively evaluated using standard procedures. In vivo anti-diabetic activity was performed by using the alloxan-induced diabetes method by orally administering methanolic extract of stem bark at doses of 200 and 400 mg/kg of body weight and profiling blood glucose levels at 0, 7, 14, 21 days using a glucometer. Biochemical parameters such as cholesterol, high-density lipoproteins, low-density lipoproteins, creatinine, urea and alkaline phosphatase were also evaluated. P. biglandulosa stem bark extract at the tested dose levels of 200 and 400 mg/kg showed a significant reduction in blood glucose level with 175.34 ± 9.357 and 171.69 ± 6.248 mg/dL respectively as compared with diabetic control grouP. The observed anti-diabetic activity could be associated with the phytochemicals present in this plant extract. The results suggest that P. biglandulosa bark extract possess anti-diabetic activity and this validates its folkloric use.

Keywords:

Diabetes mellitus, Parkia biglandulosa, Mimosaceae, Alloxan, Antidiabetic activity, Medicinal plant.

DOI

https://doi.org/10.25004/IJPSDR.2021.130508

References

Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World J Diabetes. 2015;6(6):850-867.

Piero MN, Nzaro GM, Njagi JM. Diabetes mellitus – a devastating metabolic disorder. Asian Journal of Biomedical and Pharmaceutical Sciences. 2014; 04 (40):1-7.

Latha S, Vijayakumar R. The facts about diabetes mellitus- a review. Galore International Journal of Health Sciences & Research. 2019; 4(2): 64-75.

Boyle JP, Honeycutt AA, Narayan KM, Hoerger TJ, Geiss LS, Chen H. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care. 2001; 24: 1936-40.

Moradi B, Abbaszadeh S, Shahsavari S, Alizadeh M, Beyranvand F. The most useful medicinal herbs to treat diabetes. Biomedical Research and Therapy. 2018;5(8):2538-51

Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants, Acta Poloniae Pharmaceutica ñ Drug Research2010; 2(67): 113-118.

Baiga VP, Kumar K, Yadav S, kumar P, Shukla D, Mani M. Evaluation of Antidiabetic Activity of Leucomeris spectabilis Extract in Alloxan-induced Diabetic Rats, Journal of Drug Delivery and Therapeutics. 2018; 8(5):273-279.http://dx.doi.org/10.22270/jddt.v8i5.1838.

Moradi B, Abbaszadeh S, Shahsavari S, Alizadeh M, Beyranvand F. The most useful medicinal herbs to treat diabetes. Biomedical Research and Therapy. 2018; 5(8): 2538-2551. https://doi. org/10.15419/bmrat.v5i8.463.

Ghorbani A. Best herbs for managing diabetes: A review of clinical studies, Brazilian Journal of Pharmaceutical Sciences.2013; 3(49): 413-422.

Kolhe RC, Chaudhari RY. A Review on Phytopharmacological Profile of Traditionally used medicinal plant P. biglandulosa (Mimosaceae). Asian J. Pharm. Res. 2020; 10(1): 34-38. doi: 10.5958/2231- 5691.2020.00008.8

Pingale R, Pokharkar D, Phadatare SP, Gorle A. Pharmacognostic Evaluation of P. biglandulosa bark. International Journal of Pharmacognosy and Phytochemical Research 2016; 8(7): 1160-1163

Saleh MSM, Jalil J, Zainalabidin S, Asmadi AY, Mustafa NH, Kamisah Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. International Journal of Molecular Sciences. 2021; 22(2):618. https://doi.org/10.3390/ijms22020618

Obernier JA, Baldwin RL. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 2006;47(4):364–369. doi:10.1093/ilar.47.4.364

Ayub SM, Garg S, Garg K. Sub-acute toxicity studies on pendimethalin in rats. Indian J Pharmacol. 1997;29(5):322.

OECD (2008), Test No. 425: Acute Oral Toxicit y: Up-and- D ow n P r o c e du r e , OE C D G u ide l i ne s f or t he Te s t i n g of Chemicals, Section 4, OECD Publishing , Paris, ht tps://doi. org/10.1787/9789264071049-en.

Bhar t i SK , K r ishnan S, Kumar A , Kumar A . A nt idiabet ic phytoconstituents and their mode of action on metabolic pathways. Ther Adv Endocrinol Met ab. 2018;9(3):81-100. doi:10.1177/2042018818755019

Teoh SL, Das S. Phytochemicals and their effective role in the treatment of diabetes mellitus: a short review. Phytochem Rev 17, 1111–1128 (2018). https://doi.org/10.1007/s11101-018-9575-z

Chauhan A, Sharma PK, Srivastava P, Kumar N, Duehe R. Plants having potential anti-diabetic activity: a review. Der Pharmacia Lettre. 2010; 2: 369-387.

Odoh UE, Ezugwu CO. Anti-Diabetic and Toxicological Studies of The Alkaloids of Acanthus montanus (Acanthaceae) Leaf. Planta Medica. 2012; 78.

Ajebli M, Khan H, Eddouks M. Natural Alkaloids and Diabetes Mellitus: A Review. Endocrine Metabolic & Immune Disorders - Drug Targets. 2021; 21: 111. https://doi.org/10.2174/187153032 0666200821124817.

Pałasz A, Cież D, Trzewik B, Miszczak K, Tynor G, Bazan B. In the Search of Glycoside-Based Molecules as Antidiabetic Agents. Top Curr Chem (Z).2019; 377:19.https://doi.org/10.1007/s41061-019- 0243-6

Cherian S, Kumar RV, Augusti KT, Kidwai JR. Anti-diabetic effect of a glycoside of pelargonidin isolated from the bark of Ficus bengalensis Linn. Indian J Biochem Biophys. 1992 Aug;29(4):380-2. PMID: 1427968.

Shenoy RS, Prashanth KVH, Manonmani HK. In Vitro Antidiabetic Effects of Isolated Triterpene Glycoside Fraction from Gymnema sylvestre. Evidence-Based Complementary and Alternative Medicine. vol. 2018: 12 https://doi.org/10.1155/2018/7154702

Chen J, Mangelinckx S, Adams A, Wang ZT, Li WL, De Impel N. Natural flavonoids as potential herbal medication for the treatment of diabetes mellitus and its complications. Nat. Prod. Commun.2015; 10: 187–200.

Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019;9(9):430. Published 2019 Sep 1. doi:10.3390/biom9090430

Esmaeili MA, Sadeghi, H. Pancreatic β-cell protective effect of rutin and apigenin isolated from Teucrium polium. Pharmacologyonline. 2009; 2:341–353.

Ahmad M, Akhtar MS, Malik T, Gilani AH. Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds. Phytother Res. 2000; 14: 103-106.

Babu PV, Liu D, Gilbert ER. Recent advances in understanding the anti- diabetic actions of dietary flavonoids. J Nutr Biochem. 2013;24: 1777-1789.

Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab. (Lond.) 2015;12:60. doi: 10.1186/s12986-015-0057-7.

Elekofehinti OO. Saponins: Anti-diabetic principles from medicinal plants – A review. Pathophysiology.2015; 22(2): 95-103. https://doi. org/10.1016/j.pathophys.2015.02.001.

El B arky A R, H ussein S A, A lm-Eldeen A A, H afez Y A, M ohamed TM. Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother. 2016;84:1472-1487. doi: 10.1016/j. biopha.2016.10.002. Epub 2016 Oct 31. PMID: 27810340.

Han C, Hui Q, Wang Y. Hypoglycaemic activity of saponin fraction extracted from Momordica charantia in PEG/salt aqueous two-phase systems. Nat Prod Res.2008; 22:1112–1119.

Musa Y, Ibrahim Y. Evaluat ion of A nt idiabet ic Ef fec t s of Saponins Extracted from Methanol Leaf Extract of Commiphora kerstingii Engl.. Asian Journal of Applied Sciences.2019; 12: 180- 184.10.3923/ajaps.2019.180.184

Mukundi MJ, Mwangi NEN, Peiro NM, Murugi NJ, Daniel AS, Peter GK,Alice MN. In Vivo Anti-diabetic Effects of Aqueous Leaf Extracts of Rhoicissus tridentata in Alloxan Induced Diabetic Mice. Journal of Developing Drugs.2015;4:131-135. 10.4172/2329-6631.1000131.

Kunyanga CN, Imungi JK, Okoth M, Momanyi C, Biesalski HK, et al. (2011) Antioxidant and anti-diabetic properties of condensed tannins in acetonic extract of selected raw and processed indigenous food ingredients from Kenya. J Food Sci 76: C560-567.

Rupesh P, Pal SC, Pavani A, Gadge MS. Quantitative estimation of the active constituents of Parkia biglandulosa by using HPTLC and FTIR. International Journal of Pharma and Bio Sciences 2010; 1 (4): 315-322.

Published

30-09-2021
Statistics
Abstract Display: 481
PDF Downloads: 507
Dimension Badge

How to Cite

“Anti-Diabetic Potential of Extract Obtained from Parkia Biglandulosa (mimosaceae) Stems Bark Using Alloxan Induced Diabetes Model”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 13, no. 5, Sept. 2021, pp. 511-6, https://doi.org/10.25004/IJPSDR.2021.130508.

Issue

Section

Research Article

How to Cite

“Anti-Diabetic Potential of Extract Obtained from Parkia Biglandulosa (mimosaceae) Stems Bark Using Alloxan Induced Diabetes Model”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 13, no. 5, Sept. 2021, pp. 511-6, https://doi.org/10.25004/IJPSDR.2021.130508.

Similar Articles

1-10 of 575

You may also start an advanced similarity search for this article.