A Comprehensive Review on Brugada Syndrome: Etiology, Hormonal role, Current Treatment Regimen, and Role of Polyunsaturated Fatty Acids

Authors

  • Bedanta Bhattacharjee Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam-786004, India https://orcid.org/0000-0002-8481-3214
  • Parikshit Das Department of Pharmaceutical sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
  • Abu Md Ashif Ikbal Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura-799022, India
  • Ritika Baidya Department of Pharmaceutical sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand-835215, India
  • Ankita Choudhury Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam-786004, India

Abstract

Brugada syndrome is a disorder caused by alteration or mutation in the ion channels, abnormal ECG resulting in elevated ST segment and blockage of right bundle brank. It has a genetic history and can be passed down from the parents to their offspring and may be further complicated if someone already had a cardiac arrest or other cardiac-related issues. At present, there is no permanent cure strategy available to treat this disorder. However, some surgical and pharmacological intervention approaches, such as the use of defibrillators, catheters can provide some relief, but due to their excessive cost and complications, their use has been limited. Polyunsaturated fatty acids (PUFA) components: Eicosapentaenoic acid and docosahexaenoic acid were found to play a significant role in reducing the cardiovascular events and mortality rate. The primary sources of these fatty acids are fish and fish oils. This review attempts to summarize the cardioprotective role of PUFA in preventing ventricular arrhythmias and Brugada syndrome through alteration of cardiac ion channels.

Keywords:

Brugada, PUFA, Eicosapentaenoic acid, Docosahexaenoic acid, Ventricular arrhythmia, ion channels, ECG

DOI

https://doi.org/10.25004/IJPSDR.2021.130518

References

Demiroglu H, Özcebe OI, Barista I, Dündar S, Eldem B. RETRACTED: Interferon alfa-2b, colchicine, and benzathine penicillin versus colchicine and benzathine penicillin in Behçet’s disease: a randomised trial: Elsevier; 2000.

Gaw AC, Lee B, Gervacio-Domingo G, Antzelevitch C, Divinagracia R, Jocano Jr F. Unraveling the enigma of Bangungut: is sudden unexplained nocturnal death syndrome (SUNDS) in the Philippines a disease allelic to the Brugada syndrome? Philippine journal of internal medicine. 2011;49(3):165.

Brugada R, Campuzano O, Sarquella-Brugada G, Brugada J, Brugada P. Brugada syndrome. Methodist DeBakey cardiovascular journal. 2014;10(1):25.

Goel A, Pothineni NV, Singhal M, Paydak H, Saldeen T, Mehta JL. Fish, fish oils and cardioprotection: promise or fish tale? International journal of molecular sciences. 2018;19(12):3703.

Schwartz PJ, Ackerman MJ, Antzelevitch C, et al. Inherited cardiac arrhythmias. Nature Reviews Disease Primers. 2020;6(1):1-22.

Junttila M, Raatikainen M, Karjalainen J, Kauma H, Kesäniemi Y, Huikuri H. Prevalence and prognosis of subjects with Brugada-type ECG pattern in a young and middle-aged Finnish population. European heart journal. 2004;25(10):874-878.

Gourraud J-B, Barc J, Thollet A, Le Marec H, Probst V. Brugada syndrome: diagnosis, risk stratification and management. Archives of cardiovascular diseases. 2017;110(3):188-195.

Burri L, Hoem N, Banni S, Berge K. Marine omega-3 phospholipids: metabolism and biological activities. International journal of molecular sciences. 2012;13(11):15401-15419.

Wall R, Ross RP, Fitzgerald GF, Stanton C. Fatty acids from fish: the anti-inflammatory potential of long-chain omega-3 fatty acids. Nutrition reviews. 2010;68(5):280-289.

Bowles NE, Bowles KR, Towbin JA. The “Final Common Pathway” hypothesis and inherited cardiovascular disease the role of Cytoskeletal proteins in dilated cardiomyopathy. Herz. 2000;25(3): 168-175.

Mazzanti A, Priori SG. Brugada syndrome: the endless conundrum: American College of Cardiology Foundation Washington, DC; 2016.

Antzelevitch C, Patocskai B. Brugada syndrome: clinical, genetic, molecular, cellular, and ionic aspects. Current problems in cardiology. 2016;41(1):7-57.

Polovina MM, Vukicevic M, Banko B, Lip GY, Potpara TS. Brugada syndrome: A general cardiologist’s perspective. European journal of internal medicine. 2017;44:19-27.

Brugada J, Campuzano O, Arbelo E, Sarquella-Brugada G, Brugada R. Present status of Brugada syndrome: JACC state-of-the-art review. Journal of the American College of Cardiology. 2018;72(9):1046-1059.

Vatta M, Dumaine R, Varghese G, et al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Human molecular genetics. 2002;11(3):337-345.

Postema PG. About Brugada syndrome and its prevalence: Oxford University Press; 2012.

Sieira J, Brugada P. The definition of the Brugada syndrome. European heart journal. 2017;38(40):3029-3034.

Vohra J, Rajagopalan S. Update on the diagnosis and management of Brugada syndrome. Heart, Lung and Circulation. 2015;24(12):1141- 1148.

Sieira J, Dendramis G, Brugada P. Pathogenesis and management of Brugada syndrome. Nature Reviews Cardiology. 2016;13(12):744- 756.

Di Grande A, Tabita V, Lizzio MM, et al. Early repolarization syndrome and Brugada syndrome: Is there any linkage? European journal of internal medicine. 2008;19(4):236-240.

Corrado D, Migliore F, Zorzi A. Brugada Syndrome: In search of a cause: American College of Cardiology Foundation Washington, DC; 2018.

Elizari MV, Levi R, Acunzo RS, et al. Abnormal expression of cardiac neural crest cells in heart development: a different hypothesis for the etiopathogenesis of Brugada syndrome. Heart Rhythm. 2007;4(3):359-365.

Eckardt L. Gender differences in Brugada syndrome. Journal of cardiovascular electrophysiology. 2007;18(4):422-424.

Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105(11):1342-1347.

Brugada P, Brugada R, Brugada J. Patients with an asymptomatic Brugada electrocardiogram should undergo pharmacological and electrophysiological testing. Circulation. 2005;112(2):279-292.

Di Mauro V, Ceriotti P, Lodola F, et al. Peptide-based targeting of the L-type calcium channel corrects the loss-of-function phenotype of two novel mutations of the CACNA1 gene associated with brugada syndrome. Frontiers in Physiology. 2021;11:1741.

Rojas R, Kaul R, Frenkel D, et al. Brugada syndrome clinical update. Hospital Practice. 2021:1-7.

Asatryan B, Yee L, Ben-Haim Y, et al. Sex-related differences in cardiac Channelopathies: implications for clinical practice. Circulation. 2021;143(7):739-752.

Shimizu W. Extrinsic sex hormones rather than gender itself contribute directly to the electrocardiographic phenotype. Heart Rhythm. 2021;18(7):1210-1211.

Rodríguez-Mañero M, Jordá P, Hernandez J, et al. Long-term prognosis of women with Brugada syndrome and electrophysiological study. Heart Rhythm. 2021;18(5):664-671.

Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111(5):659-670.

Schulze‐Bahr E, Eckardt L, Breithardt G, et al. Erratum: Sodium channel gene (SCN5A) mutations in 44 index patients with brugada syndrome: Different incidences in familial and sporadic disease. Human Mutation. 2005;26(1):61-61.

Foddha H, Bouzidi N, Foddha A, et al. Single nucleot ide polymorphisms of SCN5A and SCN10A genes increase the risk of ventricular arrhythmias during myocardial infarction. Advances in Clinical and Experimental Medicine. 2020;29(4):423-429.

Nielsen MW, Holst AG, Olesen S-P, Olesen MS. The genetic component of Brugada syndrome. Frontiers in physiology. 2013;4:179.

Delpón E, Cordeiro JM, Núñez La, et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circulation: Arrhythmia and Electrophysiology. 2008;1(3): 209-218.

Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115(4):442-449.

Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart rhythm. 2010;7(1):33-46.

Webster AL, Yan MS-C, Marsden PA. Epigenetics and cardiovascular disease. Canadian Journal of Cardiology. 2013;29(1):46-57.

Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxidants & redox signaling. 2013;18(15):1920-1936.

Letsas KP, Bazoukis G, Efremidis M, et al. Clinical characteristics and long-term clinical course of patients with Brugada syndrome without previous cardiac arrest: a multiparametric risk stratification approach. EP Europace. 2019;21(12):1911-1918.

Zhao D, Liang B, Peng J, et al. Long‐term follow‐up in patients with Brugada Syndrome in South China. Annals of Noninvasive Electrocardiology. 2021:e12823.

Di Diego JM, Cordeiro JM, Goodrow RJ, et al. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation. 2002;106(15):2004-2011.

Gutierrez G, Wamboldt R, Baranchuk A. The impact of testosterone on the QT interval: A Systematic review. Current Problems in Cardiology. 2021:100882.

Liu X-K, Katchman A, Whitfield BH, et al. In vivo androgen treatment shortens the QT interval and increases the densities of inward and delayed rectifier potassium currents in orchiectomized male rabbits. Cardiovascular research. 2003;57(1):28-36.

Bai C-X, Kurokawa J, Tamagawa M, Nakaya H, Furukawa T. Nontranscriptional regulation of cardiac repolarization currents by testosterone. Circulation. 2005;112(12):1701-1710.

Matsuo K, Akahoshi M, Seto S, Yano K. Disappearance of the Brugada‐Type Electrocardiogram After Surgical Castration: A Role for Testosterone and an Explanation for the Male Preponderance? Pacing and clinical electrophysiology. 2003;26(7p1):1551-1553.

Shimizu W, Matsuo K, Takagi M, et al. Body Surface Distribution and Response to Drugs of ST Segment Elevation in Brugada Syndrome: Clinical Implication of Eighty‐Seven–Lead Body Surface Potential Mapping and Its Application to Twelve‐Lead Electrocardiograms. Journal of cardiovascular electrophysiology. 2000;11(4):396-404.

Sumitomo N, Karasawa K, Taniguchi K, et al. Association of sinus node dysfunction, atrioventricular node conduction abnormality and ventricular arrhythmia in patients with Kawasaki disease and coronary involvement. Circulation Journal. 2008;72(2): 274-280.

Sichrovsky TC, Mittal S. Brugada syndrome unmasked by use of testosterone in a transgender male: Gender trumps sex as a risk factor. The Journal of Innovations in Cardiac Rhythm Management. 2019;10(2):3526.

Vivona P, Dagradi F, Ciulla MM. In a case of female-to-male sex reassignment, testosterone therapy switches on an underlying Brugada. International Journal of Arrhythmia. 2020;21(1):1-4.

Glikson M, Friedman PA. The implantable cardioverter defibrillator. The Lancet. 2001;357(9262):1107-1117.

Nademanee K, Veerakul G, Mower M, et al. Defibrillator versus β-blockers for unexplained deat h in Thailand (DEBUT ) a randomized clinical trial. Circulation. 2003;107(17):2221-2226.

Lee JC, Epstein LM, Huffer LL, Stevenson WG, Koplan BA, Tedrow UB. ICD lead proarrhythmia cured by lead extraction. Heart Rhythm. 2009;6(5):613-618.

Goldenberg I, Huang DT, Nielsen JC. The role of implantable cardioverter-defibrillators and sudden cardiac death prevention: indications, device selection, and outcome. European heart journal. 2020;41(21):2003-2011.

Boukens BJ, Benjacholamas V, van Amersfoort S, et al. Structurally abnormal myocardium underlies ventricular fibrillation storms in a patient diagnosed with the early repolarization pattern. Clinical Electrophysiology. 2020;6(11):1395-1404.

Brodie OT, Michowitz Y, Belhassen B. Pharmacological therapy in Brugada syndrome. Arrhythmia & electrophysiology review. 2018;7(2):135.

Members ATF, Priori SG, Blomström-Lundqvist C, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Ep Europace. 2015;17(11):1601-1687.

Viskin S, Wilde AA, Tan HL, Antzelevitch C, Shimizu W, Belhassen B. Empiric quinidine therapy for asymptomatic Brugada syndrome: time for a prospective registry. Heart Rhythm. 2009;6(3):401-404.

Cheniti G, Vlachos K, Meo M, et al. Mapping and ablation of idiopathic ventricular fibrillation. Frontiers in cardiovascular medicine. 2018;5:123.

Haïssaguerre M, Extramiana F, Hocini M, et al. Mapping and ablation of ventricular fibrillation associated with long-QT and Brugada syndromes. Circulation. 2003;108(8):925-928.

Bao Y. Electrophysiological Role of Voltage-gated Sodium Channel B2 Subunits in the Heart2015.

Sunsaneewitayakul B, Yao Y, Thamaree S, Zhang S. Endocardial mapping and catheter ablation for ventricular fibrillation prevention in Brugada syndrome. Journal of cardiovascular electrophysiology. 2012;23:s10-s16.

Széplaki G, Özcan EE, Osztheimer I, Tahin T, Merkely B, Gellér L. Ablation of the epicardial substrate in the right ventricular outflow tract in a patient with Brugada syndrome refusing implantable cardioverter defibrillator therapy. Canadian Journal of Cardiology. 2014;30(10):1249. e1249-1249. e1211.

Wilde AA, Nademanee K. Epicardial substrate ablation in Brugada syndrome: time for a randomized trial!: Am Heart Assoc; 2015.

Tung R, Michowitz Y, Yu R, et al. Epicardial ablation of ventricular tachycardia: an institutional experience of safety and efficacy. Heart Rhythm. 2013;10(4):490-498.

Saini RK, Keum Y-S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance—A review. Life sciences. 2018;203:255-267.

Omura M, Kobayashi S, Mizukami Y, et al. Eicosapentaenoic acid (EPA) induces Ca2+-independent activation and translocation of endothelial nitric oxide synthase and endothelium-dependent vasorelaxation. FEBS letters. 2001;487(3):361-366.

Ishida T, Naoe S, Nakakuki M, Kawano H, Imada K. Eicosapentaenoic acid prevents saturated fatty acid-induced vascular endothelial dysfunction: involvement of long-chain acyl-CoA synthetase. Journal of atherosclerosis and thrombosis. 2015;22(11):1172-1185.

Yang Z-H, Amar M, Sampson M, et al. Comparison of omega-3 eicosapentaenoic acid versus docosahexaenoic acid-rich fish oil supplementation on plasma lipids and lipoproteins in normolipidemic adults. Nutrients. 2020;12(3):749.

Kromhout D, Yasuda S, Geleijnse JM, Shimokawa H. Fish oil and omega-3 fatty acids in cardiovascular disease: do they really work? European heart journal. 2012;33(4):436-443.

Endo J, Arit a M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. Journal of cardiology. 2016;67(1):22-27.

Heydari B, Abdullah S, Pottala JV, et al. Effect of omega-3 acid ethyl esters on left ventricular remodeling after acute myocardial infarction: the OMEGA-REMODEL randomized clinical trial. Circulation. 2016;134(5):378-391.

Endo J, Sano M, Isobe Y, et al. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload–induced maladaptive cardiac remodeling. Journal of Experimental Medicine. 2014;211(8):1673-1687.

Duda MK, O’Shea KM, Stanley WC. ω-3 polyunsaturated fatty acid supplementation for the treatment of heart failure: mechanisms and clinical potential. Cardiovascular research. 2009;84(1):33-41.

Nademanee K, Veerakul G, Chandanamattha P, et al. Prevention of ventricular fibrillation episodes in Brugada syndrome by catheter ablation over the anterior right ventricular outflow tract epicardium. Circulation. 2011;123(12):1270-1279.

Sakamoto A, Saotome M, Iguchi K, Maekawa Y. Marine-derived omega-3 polyunsaturated fatty acids and heart failure: Current understanding for basic to clinical relevance. International journal of molecular sciences. 2019;20(16):4025.

Sheikh O, Hei AGV, Battisha A, Hammad T, Pham S, Chilton R. Cardiovascular, electrophysiologic, and hematologic effects of omega-3 fatty acids beyond reducing hypertriglyceridemia: as it pertains to the recently published REDUCE-IT trial. Cardiovascular diabetology. 2019;18(1):1-12.

Jia X, Kohli P, Virani SS. Omega-3 fatty acid and cardiovascular outcomes: insights from recent clinical trials. Current atherosclerosis reports. 2019;21(1):1.

Walia J, Steinberg C, Laksman Z. Brugada syndrome: updated perspectives. Research Reports in Clinical Cardiology. 2019;10:19-32.

Li G-R, Sun H-Y, Zhang X-H, et al. Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K+ currents and Na+ current in human atrial myocytes. Cardiovascular research. 2009;81(2):286-293.

Moreno C, Macías Á, Prieto Á, De La Cruz A, González T, Valenzuela C. Effects of n− 3 polyunsaturated fatty acids on cardiac ion channels. Frontiers in physiology. 2012;3:245.

Sendfeld F, Selga E, Scornik FS, Pérez GJ, Mills NL, Brugada R. Experimental models of Brugada syndrome. International journal of molecular sciences. 2019;20(9):2123.

Doisne N, Grauso M, Mougenot N, et al. In vivo Dominant-Negative Effect of an SCN5A Brugada Syndrome Variant. Frontiers in Physiology. 2021;12:687.

Giudicessi JR, Ye D, Tester DJ, et al. Transient outward current (Ito) gain-of-function mutations in the KCND3-encoded Kv4. 3 potassium channel and Brugada syndrome. Heart Rhythm. 2011;8(7):1024-1032.

Barajas-Martínez H, Hu D, Ferrer T, et al. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm. 2012;9(4):548-555.

Riuró H, Beltran‐Alvarez P, Tarradas A, et al. A Missense Mutation in the Sodium Channel β2 Subunit Reveals SCN2B as a New Candidate Gene for B rugada Syndrome. Human mutation. 2013;34(7): 961-966.

Hu D, Barajas-Martinez H, Burashnikov E, et al. A mutation in the β3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circulation: Cardiovascular Genetics. 2009;2(3):270-278.

Ohno S, Zankov DP, Ding W-G, et al. KCNE5 (KCNE1L) variants are novel modulators of Brugada syndrome and idiopathic ventricular fibrillation. Circulation: Arrhythmia and Electrophysiology. 2011;4(3):352-361.

Ueda K, Hirano Y, Higashiuesato Y, et al. Role of HCN4 channel in preventing ventricular arrhythmia. Journal of human genetics. 2009;54(2):115-121.

K at t yg narat h D, Maugenre S, Ney roud N, et a l. MOG1: a new susceptibility gene for Brugada syndrome. Circulation: Cardiovascular Genetics. 2011;4(3):261-268.

London B, Michalec M, Mehdi H, et al. Mutation in glycerol-3- phosphate dehydrogenase 1–like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116(20):2260-2268.

Cerrone M, Lin X, Zhang M, et al. Missense mutations in plakophilin-2 cause sodium current deficit and associate with a Brugada syndrome phenotype. Circulation. 2014;129(10):1092-1103.

Hu D, Barajas-Martínez H, Pfeiffer R, et al. Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome. Journal of the American College of Cardiology. 2014;64(1):66-79.

Bezzina CR, Barc J, Mizusawa Y, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nature genetics. 2013;45(9):1044-1049.

Sumi S, Maruyama S, Shiga Y, et al. High efficacy of disopyramide in the management of ventricular fibrillation storms in a patient with Brugada syndrome. Pacing and Clinical Electrophysiology. 2010;33(6):e53-e56.

Belhassen B, Rahkovich M, Michowitz Y, Glick A, Viskin S. Management of Brugada syndrome: thirty-three–year experience using electrophysiologically guided therapy with class 1A anti-arrhythmic drugs. Circulation: Arrhythmia and Electrophysiology. 2015;8(6):1393-1402.

Jongman J, Jepkes-Bruin N, Misier AR, et al. Electrical storms in Brugada syndrome successfully treated with isoproterenol infusion and quinidine orally. Netherlands Heart Journal. 2007;15(4): 151-154.

Vega J, Enríquez A, Vergara I, et al. Electrical storm in Brugada syndrome successfully treated with isoproterenol. Report of a case. Revista medica de Chile. 2013;141(10):1340-1343.

Dakkak M, Baxi K, Patel A. Beneficial effects of isoproterenol and quinidine in the treatment of ventricular fibrillation in Brugada syndrome. Case reports in cardiology. 2015;2015.

Schweizer PA, Becker R, Katus HA, Thomas D. Successful acute and long-term management of electrical storm in Brugada syndrome using orciprenaline and quinine/quinidine. Clinical research in cardiology. 2010;99(7):467-470.

Kyriazis K, Bahlmann E, van der Schalk H, Kuck K-H. Electrical storm in Brugada syndrome successfully treated with orciprenaline; effect of low-dose quinidine on the electrocardiogram. Europace. 2009;11(5):665-666.

Agaç MT, Erkan H, Korkmaz L. Conversion of Brugada type I to type III and successful control of recurrent ventricular arrhythmia with cilostazol. Arch Cardiovasc Dis. 2014;107(8-9):476-478.

Shinohara T, Ebata Y, Ayabe R, et al. Combination therapy of cilostazol and bepridil suppresses recurrent ventricular fibrillation related to J-wave syndromes. Heart Rhythm. 2014;11(8): 1441-1445.

Aizawa Y, Yamakawa H, Takatsuki S, et al. Efficacy and safety of bepridil for prevention of ICD shocks in patients with Brugada syndrome and idiopathic ventricular fibrillation. International journal of cardiology. 2013;168(5):5083-5085.

Chinushi M, Iijima K, Sato A, Furushima H. Short-coupling premature ventricular complexes from the left ventricle triggered isoproterenol-resistant electrical storm in a patient with Brugada syndrome. Heart Rhythm. 2013;10(6):916-920.

Published

30-09-2021
Statistics
Abstract Display: 615
PDF Downloads: 602
Dimension Badge

How to Cite

“A Comprehensive Review on Brugada Syndrome: Etiology, Hormonal Role, Current Treatment Regimen, and Role of Polyunsaturated Fatty Acids”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 13, no. 5, Sept. 2021, pp. 589-9, https://doi.org/10.25004/IJPSDR.2021.130518.

Issue

Section

Review Article

How to Cite

“A Comprehensive Review on Brugada Syndrome: Etiology, Hormonal Role, Current Treatment Regimen, and Role of Polyunsaturated Fatty Acids”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 13, no. 5, Sept. 2021, pp. 589-9, https://doi.org/10.25004/IJPSDR.2021.130518.