GENE THERAPY OF CANCEROUS DISEASES

Authors

  • A. Valenčáková University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovak Republic
  • A. Dziaková University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovak Republic
  • E. Hatalová University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, Slovak Republic

Abstract

Gene therapy of cancerous diseases provides new means of curing patients with oncologic illnesses. There are several approaches in treating cancer by gene therapy. Most commonly used methods are: cancer immunogene therapy, suicide gene therapy, application of tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells used as vectors, gene directed enzyme/prodrug therapy and bacteria used as anti-cancer agents. Cancer gene immunotherapy uses several immunologic agents for the purpose of explaining effective anti-tumor immune response. Another method is suicide gene therapy, based on introducing viral or bacterial agents to tumor cells, allowing the conversion of a non-toxic compound to a lethal medication. The application of intact suppressor genes to cancer cells will avert their neoplastic behavior and will induce tumor regression. Inhibition of angiogenesis is also a promising strategy for treating oncologic patients. Mesenchymal stem cells can also be used as vectors in targeted gene therapy. An increasing list of experimental evidence shows, that therapeutically modified mesenchymal stem cells in “gene directed enzyme/prodrug therapy” can attack cancer tissue can kill tumor cells, cancer stem cells included. Bacteria are used as anti-cancer agents independently of in combination with conventional therapeutic methods.

Keywords:

Cancer, gene therapy, tumor-suppressor genes, antiangiogenic therapy, mesenchymal stem cells, gene directed enzyme/prodrug therapy

DOI

https://doi.org/10.25004/

References

1. Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V. Suicide gene therapy in cancer: where do we stand now? Cancer Lett. 2012; 324(2):160-70.
2. Lehouritis P, Springer C, Tangney M. Bacterial-directed enzyme prodrug therapy. J Control Release. 2013; 170(1):120-31.
3. Guan YS, Liu Y, He Q, Li X, Yang L, Hu Y, La Z. P53 gene therapy in combination with transcatheter arterial chemoembolization for HCC: one-year follow-up. World J. Gastroenterol. 2011; 17:2143-2149.
4. Wysocki PJ, Grabarczyk P, Mackiewicz-Wysocka M, Kowalczyk DW, Mackiewicz A. Genetically modified dendritic cells--a new, promising cancer treatment strategy? Expert Opin Biol Ther. 2002; 2(8):835-45.
5. Habal N, Gupta RK, Bilchik AJ, Yee R, Leopoldo Z, Ye W, Elashoff RM, Morton DL. CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular immune responses in advanced colon cancer. Ann Surg Oncol. 2001; 8(5):389-401.
6. Van Gool SW, Zhang Y, Kasran A, de Boer M, Ceuppens JL. T helper-independent activation of human CD8+ cells: the role of CD28 costimulation. Scand J Immunol. 1996; 44(1):21-9.
7. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998; 392(6673):245-52.
8. Fuchs, EJ, Matzinger, P. Is cancer dangerous to the immune system? Semin Immunol. 1996; 8(5):271-80.
9. Nawrocki S, Murawa P, Malicki J, Kapcinska M, Gryska K, Izycki D, Kaczmarek A,Laciak M, Czapczyk A, Karczewska A, Rose-John S, Mackiewicz A. Genetically modified tumour vaccines (GMTV) in melanoma clinical trials. Immunol Lett. 2000; 74(1):81-6.
10. Tasaki K, Yoshida Y, Maeda T, Miyauchi M, Kawamura K, Takenaga K, Yamamoto H, Kouzu T, Asano T, Ochiai T, Sakiyama S, Tagawa M. Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type 1 helper T cells. Cancer Gene Ther. 2000; 7(2):247-54.
11. Nishiyama T, Tachibana M, Horiguchi Y, Nakamura K, Ikeda Y, Takesako K, Murai M. Immunotherapy of bladder cancer using autologous dendritic cells pulsed with human lymphocyte antigen-A24-specific MAGE-3 peptide. Clin Cancer Res. 2001; 7(1):23-31.
12. Suzuki S, Tadakuma T, Kunitomi M, Takayama E, Sato M, Asano T, Nakamura H, Hayakawa M. Liposome-mediated gene therapy using HSV-TK/ganciclovir under the control of human PSA promoter in prostate cancer cells. Urol Int. 2001; 67(3):216-23.
13. Carrió M, Mazo A, López-Iglesias C, Estivill X, Fillat C. Retrovirus-mediated transfer of the herpes simplex virus thymidine kinase and connexin26 genes in pancreatic cells results in variable efficiency on the bystander killing: implications for gene therapy. Int J Cancer. 2001; 94(1):81-8
14. Mackiewicz J, Karczewska-Dzionk A, Laciak M, Kapcinska M, Wiznerowicz M, Burzykowski T, Zakowska M, Rose-John S, Mackiewicz A. Whole Cell Therapeutic Vaccine Modified With Hyper-IL6 for Combinational Treatment of Nonresected Advanced Melanoma. Medicine (Baltimore). 2015; 94(21): e853
15. McCormick F. Cancer gene therapy: fringe or cutting edge? Nat Rev Cancer. 2001; 1(2):130-41.
16. Xu M, Kumar D, Srinivas S, Detolla LJ, Yu SF, Stass SA, Mixson AJ. Parenteral gene therapy with p53 inhibits human breast tumors in vivo through a bystander mechanism without evidence of toxicity. Hum Gene Ther. 1997; 8(2):177-85.
17. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L, Kirn D. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med. 2000; 6(10):1134-9.
18. Boehm T, Folkman J, Browder T, O'Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 1997; 390(6658):404-7.
19. Gorrin-Rivas MJ, Arii S, Mori A, Kaneda Y, Imamura M. Mouse macrophage metalloelastase gene delivery by HVJ-cationic liposomes in experimental antiangiogenic gene therapy for murine CT-26 colon cancer. Int J Cancer. 2001; 93(5):731-5.
20. Goldman CK, Kendall RL, Cabrera G, Soroceanu L, Heike Y, Gillespie GY, Siegal GP, Mao X, Bett AJ, Huckle WR, Thomas KA, Curiel DT. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. In the Proceedings of the 1998 National Academy of Science of the United States of America. 1998, pp. 8795-800.
21. Altaner C. Prodrug cancer gene therapy. Cancer Lett. 2008; 270(2):191-201.
22. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307(5706):58-62,
23. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst. 2004; 96(21):1593-603.
24. Kaplan RN, Psaila B, Lyden D. Bone marrow cells in the 'pre-metastatic niche': within bone and beyond. Cancer Metastasis Rev. 2006; 25(4):521-9.
25. Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O, Houkin K, Matsunaga T, Niitsu Y. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci. 2005; 96(3):149-56.
26. Kucerova L, Altanerova V, Matuskova M, Tyciakova S, Altaner C. Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res. 2007; 67(13):6304-13.
27. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4):315-7.
28. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther. 2006; 5(3):755-66.
29. Stoff-Khalili MA, Rivera AA, Mathis JM, Banerjee NS, Moon AS, Hess A, Rocconi RP, Numnum TM, Everts M, Chow LT, Douglas JT, Siegal GP, Zhu ZB, Bender HG, Dall P, Stoff A, Pereboeva L, Curiel DT. Mesenchymal stem cells as a vehicle for targeted delivery of CRAds to lung metastases of breast carcinoma. Breast Cancer Res Treat. 2007; 105(2):157-67.
30. Gronthos S, Zannettino AC, Hay SJ, Shi S, Graves SE, Kortesidis A, Simmons PJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003; 116(9):1827-35.
31. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005; 54(3):132-41.
32. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006; 24(5):1294-301.
33. Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells. 2007; 25(4):818-27.
34. Iannolo G, Conticello C, Memeo L, De Maria R. Apoptosis in normal and cancer stem cells. Crit Rev Oncol Hematol. 2008; 66(1):42-51.
35. Kang MK, Kang SK. Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev. 2007; 16(5):837-47.
36. Kang MK, Hur BI, Ko MH, Kim CH, Cha SH, Kang SK. Potential identity of multi-potential cancer stem-like subpopulation after radiation of cultured brain glioma. BMC Neurosci. 2008; 9:15.
37. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006; 5:67.
38. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC, Cho BK, Kim M, Menon LG, Black PM, Carroll RS. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res. 2006; 12(18):5550-6
39. Danks MK, Yoon KJ, Bush RA, Remack JS, Wierdl M, Tsurkan L, Kim SU, Garcia E, Metz MZ, Najbauer J, Potter PM, Aboody KS. Tumor-targeted enzyme/prodrug therapy mediates long-term disease-free survival of mice bearing disseminated neuroblastoma. Cancer Res. 2007; 67(1):22-5.
40. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells. 2008; 26(3):831-41.
41. Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997; 57(20):4537-44.
42. Sznol M, Lin SL, Bermudes D, Zheng LM, King I. Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest. 2000; 105(8):1027-30.
43. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801):249-57.
44. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. In the Proceedings of the 1998 National Academy of Sciences of the United States of America, 1998; 95(8):4607-12.
45. Cronin M, Akin AR, Collins SA, Meganck J, Kim JB, Baban CK, Joyce SA, van Dam GM, Zhang N, van Sinderen D, O'Sullivan GC, Kasahara N, Gahan CG, Francis KP, Tangney M. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS One. 2012; 7(1):e30940.
46. Forbes NS, Munn LL, Fukumura D, Jain RK. Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res. 2003; 63(17):5188-93
47. Ganai S, Arenas RB, Sauer JP, Bentley B, Forbes NS. In tumors Salmonella migrate away from vasculature toward the transition zone and induce apoptosis. Cancer Gene Ther. 2011; 18(7):457-66.
48. Min JJ, Nguyen VH, Kim HJ, Hong Y, Choy HE. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat Protoc. 2008; 3(4):629-36.
49. Cronin M, Morrissey D, Rajendran S, El Mashad SM, van Sinderen D, O'Sullivan GC, Tangney M. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. Mol Ther. 2010; 18(7):1397-407.
50. Benoit MR, Mayer D, Barak Y, Chen IY, Hu W, Cheng Z, Wang SX, Spielman DM, Gambhir SS, Matin A. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res. 2009; 15(16):5170-7.
51. Stritzker J, Weibel S, Hill PJ, Oelschlaeger TA, Goebel W, Szalay AA. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int J Med Microbiol. 2007; 297(3):151-62.

Published

01-11-2015
Statistics
Abstract Display: 174
PDF Downloads: 254
Dimension Badge

How to Cite

“GENE THERAPY OF CANCEROUS DISEASES”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 7, no. 6, Nov. 2015, pp. 444-50, https://doi.org/10.25004/.

Issue

Section

Review Article

How to Cite

“GENE THERAPY OF CANCEROUS DISEASES”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 7, no. 6, Nov. 2015, pp. 444-50, https://doi.org/10.25004/.

Similar Articles

1-10 of 368

You may also start an advanced similarity search for this article.