USE OF NANOTECHNOLOGY IN THE DIAGNOSIS, PREVENTION AND THERAPY OF CANCER

Authors

  • V. Tischlerová University of Pavol Jozef Šafárik, Faculty of Medicine, Department of Pharmacology; Trieda SNP 1, 04011 Košice, Slovak Republic
  • A. Valenčáková University of Veterinary Medicine and Pharmacy; Department of Biology, Zoology and Radiobiology; Komenského 73, 04181 Košice, Slovak Republic

Abstract

Nanotechnology, along with other fields such as theranostics, genomics or proteomics, has one of the most potential uses in prevention, diagnosis and treatment of diseases. Formulation of different nanoparticles and modification of their surface, in general, is required to lower side effects of drugs and to improve their response in human body. The use of nanoparticles as drug carriers may improve cancer therapy and reduce harmful side effects of chemotherapy and also radiotherapy. Moreover, together with imaging contrast agents nanoparticles have great perspective in cancer diagnosis. This review focuses on chemotherapeutics that are already used and studied in combination with systems and particles in nanoscale size. The most commonly used materials for nanoparticle carriers are magnetic nanoparticles, polymer drug conjugates, dendrimers, liposomes etc. The design of nanoparticles, characterized by their material composition, size, shape, flexibility, and surface properties, essentially dictates their therapeutic outcome.

Keywords:

Cancer, nanotechnology, liposomes, polymer-drug conjugates, dendrimers, magnetic nanoparticles

DOI

https://doi.org/10.25004/IJPSDR.2015.070101

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics. CA Cancer J Clin. 2010; 60:277-300.
2. Yu MK, Park J, Jon S. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy. Theranostics. 2012; 2:3-44.
3. Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011; 63:24-46.
4. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G Nanotechnology in cancer therapy. J Drug Target. 2013; 21:904-913.
5. Dianzani CH, Zara GP, Maina G, Pettazzoni P, Pizzimenti S, Rossi F, Gigliotti CL et al. Drug Delivery Nanoparticles in Skin Cancers. BioMed Research International. 2014; 2014: 1-13.
6. Jain NK. Pharmaceutical Nanotechnology [online 22.6.2014]. pp. 1-19. <http://goo.gl/DArwwh>
7. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5, 161–171.
8. Laurent S, Mahmoudi M. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cancer. Int J Mol Epidemiol Genet. 2011; 2:367-390.
9. Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem. 2007; 53:2002-2009.
10. Ashley CE, Carnes EC, Phillips GK, Padilla D, Durfee PN, Brown PA, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials. 2011; 10:389-397.
11. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26:3995-4021.
12. Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Shane Journeay W, et al. Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev. 2011; 111:253-80.
13. Bhowmik D, Chandira RM, Jayakar B. Role of nanotechnology in novel drug delivery system. J Pharm Sci Technol. 2009; 1:20-35.
14. Mahmoudi M, Milani AS, Stroeve P, Arbab SA. Superparamagnetic Iron Oxide Nanoparticles: Synthesis, Surface Engineering, Cytotoxicity and Biomedical Applications. Nova Science Publisher; New York, 2011.
15. Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Physic Chem B. 2008; 112:14470-81.
16. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews. 2008; 108:2064-110.
17. Mahmoudi M, Serpooshan V, Laurent S. Engineered nanoparticles for biomolecular imaging. Nanoscale. 2011; 3:3007-29.
18. Meier R, Henning TD, Boddington S, Tavri S, Arora S, Piontek G, et al. Breast Cancers: MR Imaging of Folate-Receptor Expression with the Folate-Specific Nanoparticle P1133. Radiology. 2010; 255:527-35.
19. Radermacher KA, Boutry S, Laurent S, Elst LV, Mahieu I, Bouzin C, et al. Iron oxide particles covered with hexapeptides targeted at phosphatidylserine as MR biomarkers of tumor cell death. Contrast Media Mol Imaging. 2010; 5:258-67.
20. Laurent S, Boutry S, Mahieu I, Vander Elst L, Muller RN. Iron Oxide Based MR Contrast Agents: from Chemistry to Cell Labeling. Curr Med Chem. 2009; 16:4712-27.
21. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 1996; 272:263-7.
22. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems. Nano Letters. 2006; 6:2427-30.
23. Winter PM, Caruthers SD, Allen JS, Cai K, Williams TA, Lanza GM, Wickline SA. Molecular imaging of angiogenic therapy in peripheral vascular disease with ανβ3-integrin-targeted nanoparticles. Magn Reson Med. 2010; 64:369-76.
24. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome classification, preparation, and applications. Nanoscale Res Lett. 2013; 8:102.
25. Silva R, Ferreira H, Cavaco-Paulo A. Sonoproduction of liposomes and protein particles as templates for delivery purposes. Biomacromolecules. 2011; 12:3353-3368.
26. Barenholz Y. Liposome application: problems and prospects. Curr Opin Colloid Interface Sci. 2001; 6:66-77.
27. Collea RP, Kruter FW, Cantrell JE, George TK, Kruger S, Favret AM, et al. Pegylated liposomal doxorubicin plus carboplatin in patients with metastatic breast cancer: a phase II study. Ann Oncol. 2012; 23:2599-2605.
28. Chia S, Clemons M, Martin LA, Rodgers A, Gelmon K, Pond GR, Panasciet L. Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: a multicenter phase II trial. J Clin Oncol. 2006; 24:2773-2778.
29. Bleyer WA. Leptomeningeal cancer in leukemia and solid tumors. Curr Probl Cancer. 1988; 12:184-238.
30. Glantz MJ, Jaeckle KA, Chamberlain MC, Phuphanich S, Recht L, Swinnen LJ, et al. A Randomized Controlled Trial Comparing Intrathecal Sustainedrelease Cytarabine (DepoCyt) to Intrathecal Methotrexate in Patients with Neoplastic Meningitis from Solid Tumors. Clin Cancer Res. 1999; 5:3394-3402.
31. Gonzalez-Vitale JC, Garcia-Bunuel R. Meningeal carcinomatosis. Cancer (Phila). 1976; 37:2906-2911.
32. Posner JB, Chernik NL. Intracranial metastases from systemic cancer. Adv Neurol. 1978; 19:575-587.
33. Glantz MJ, Hall WH, Cole BF, Chozick BS, Shannon CM, Wahlberg L, et al. Diagnosis, management, and survival of patients with leptomeningeal cancer based on cerebrospinal fluid-flow status. Cancer (Phila). 1995; 75:2919-2931.
34. Grossman SA, Trump DL, Chen DCP, Thompson G, Camargo EE. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis: an evaluation using 111indium-DTPA ventriculography. Am J Med. 1982; 73:641-647.
35. Chamberlain MC, Corey-Bloom J. Leptomeningeal metastases: 111indium-DTPA CSF flow studies. Neurology. 1991; 41:1765-1769.
36. Strong JM, Colling MM, Lester C, Poplack DG. Pharmacokinetics of intraventricular and intravenous N, N9, N0-triethylenethiophosphoramide (thiotepa) in rhesus monkeys and humans. Cancer Res. 1986; 46:6101-6104.
37. Kim S, Khatibi S, Howell SB, Mccully C, Balis FM, Poplack DG. Prolongation of drug exposure in cerebrospinal fluid by encapsulation into DepoFoam. Cancer Res. 1993; 53:1596-1598.
38. Ringsdorf H. Structure and properties of pharmacologically active polymers. Journal of Polymer Science Part C: Polymer Symposia. 1975; 51:135-153.
39. Meerum Terwogt JM, Bokkel Huinink WW, Schellens JH, Schot M, Mandjes IA, Zurlo MG, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water-soluble polymer-conjugated prodrug of paclitaxel. Anticancer Drugs. 2001; 12:315-323.
40. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, et al. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents – drug–polymer conjugates. Clin Cancer Res. 1999; 5:83-94.
41. Yurkovetskiy AV, Fram RJ. XMT-1001, a novel polymeric camptothecin pro-drug in clinical development for patients with advanced cancer. Adv Drug Deliv Rev. 2009; 61:1193-1202.
42. Duncan R. Polymer conjugates as anticancer nanomedicines. Nature reviews Cancer. 2006; 6:688-701.
43. Li C, Wallace S. Polymer–drug conjugates: recent development in clinical oncology. Adv Drug Deliv Rev. 2008; 60:886-898.
44. Vicent MJ, Duncan R. Polymer conjugates: nanosized medicines for treating cancer. Trends in biotechnology. 2006; 247:39-47.
45. Danhauser-Riedl S, Hausmann E, Schick HD, Bender R, Dietzfelbinger H, Rastetter J, Hanauske AR. Phase-I clinical and pharmacokinetic trial of dextran conjugated doxorubicin (AD-70, DOX-OXD). Invest New Drugs. 1993; 11:187-195.
46. Duncan R, Vicent MJ, Greco F, Nicholson RI. Polymer–drug conjugates: towards a novel approach for the treatment of endocrine-related cancer. Endocrine-related Cancer. 2005; 12:189-199.
47. Seymour LW, Ferry DR, Kerr DJ, Rea D, Whitlock M, Poyner R, et al. Phase II studies of polymer-doxorubicin (PK1, FCE28068) in the treatment of breast, lung and colorectal cancer. Int J Oncol. 2009; 34:1629-1636.
48. Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002; 20:1668-1676.
49. Vicent MJ, Ringsdorf H, Duncan R. Polymer therapeutics: clinical applications and challenges for development. Adv Drug Deliv Rev. 2009; 61:1117-1120.
50. Duncan R. Polymer-drug conjugates. In Handbook of Anticancer Drug Development, Editors Budman DR, Calvert AH & Rowinsky EK. Philadelphia, USA: Lippincott, Williams & Wilkins. Edn 1, 2003, pp. 239-260.
51. Duncan R. N-(2-Hydroxypropyl) methacrylamide copolymer conjugates. Polymeric Drug Delivery Systems. 2005; 1-92.
52. Intellectual Property Office of the Slovak Republic: pH sensitive antracycline cancerostatic polymer conjugates for targeted therapy. Zentiva, k.s.: Ulbrich Karel, Etrych Tomáš, Řihová Blanka, Jelínková Markéta, Kovař Marek. Czech Republic. Translation of the European Patent, EP 1 463 529 B1. 19. 8. 2009.
53. Duncan R. Targeting and intracellular delivery of drugs. In Encyclopedia of Molecular Cell Biology and Molecular Medicine, Editor Meyers RA. Weinheim, Germany: Wiley-VCH Verlag. Vol. 14, 2005, pp. 163-204.
54. Chipman SD, Oldham FB, Pezzoni G, Singer JW. Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer–drug conjugate. Int J Nanomedicine. 2006; 1:375-383.
55. http://www.celltherapeutics.com/opaxio [online 22.6.2014]
56. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery. 2003; 2:214-221.
57. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021660s037lbl.pdf [online 22.6.2014]
58. http://www.sigmatau.com/products/oncaspar_rx.asp [online 22.6.2014]
59. http://www.nlm.nih.gov/medlineplus/druginfo/meds/a607058.html [online 22.6.2014]
60. Arias JL. Novel Strategies to Improve the Anticancer Action of 5-Fluorouracil by Using Drug Delivery Systems. Molecules. 2008; 13:2340-2369.
61. Prnka T, Šperlink K. Bionanotechnologie, nanobiotechnologie, nanomedicína. Ostrava: Repronis, 2006.
62. Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm. 2003; 257:111-124.
63. Devarakonda B, Judefeind A, Chigurupati S, Thomas S, Shah VG, Otto PD, et al. The Effect of Polyamidoamine Dendrimers on the In Vitro Cytotoxicity of Paclitaxel in Cultured Prostate Cancer (PC-3M) Cells. J Biomed Nanotechnol. 2007; 3:384-393.
64. Cheng Y, Li M, Xu T. Potential of poly(amidoamine) dendrimers as drug carriers of camptothecin based on encapsulation studies. Eur J Med Chem. 2008; 43:1791-1795.
65. Han MH, Chen J, Wang J, Chen SL, Wang XT. Blood compatibility of polyamidoamine dendrimers and erythrocyte protection. J Biomed Nanotechnol. 2010; 6:82-92.
66. Jevprasesphant R, Penny J, Jalal R, Attwood D, Mckeown NB, D’emanuele A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm. 2003; 252:263-266.
67. Qi R, Gao Y, Tang Y, He R, Liu T, He Y, et al. PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. AAPS J. 2009; 11:395-405.
68. Arias JL, Gallardo V, Gómez-Lopera SA, Plaza RC, Delgado AV. Synthesis and characterization of poly (ethyl-2-cyanoacrylate) nanoparticles with a magnetic core. J Control Release. 2001; 77:309-321.
69. Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev. 2004; 33:43-63.
70. Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, Bernstein DI. Dendrimers, a New Class of Candidate Topical Microbicides with Activity against Herpes Simplex Virus Infection. Antimicrob. Agents Chemother. 2000; 44:2471-2474.
71. Zdobnova TA, Lebedenko EN, Deyev SM. Quantum Dots for Molecular Diagnostics of Tumors. Acta Naturae. 2011; 3:29-47.
72. Giepmans BN, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science. 2006; 312:217-224.
73. Chan WC, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998; 281:2016-2018.
74. Wu MX, Liu H, Haley KN, Treadway JA, Larson JP, Ge N, et al. Immunofluorescent labelling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol. 2003; 21:41-46.
75. Laouini A, Jaafar-Maalej C, Limayem-Blouza I, Sfar S, Charcosset C, Fessi H. Preparation, characterization and applications of liposomes: State of the art. J Colloid Sci Biot. 2012; 1:147-168.

Published

01-01-2015
Statistics
Abstract Display: 273
PDF Downloads: 295
Dimension Badge

How to Cite

“USE OF NANOTECHNOLOGY IN THE DIAGNOSIS, PREVENTION AND THERAPY OF CANCER”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 7, no. 1, Jan. 2015, pp. 01-07, https://doi.org/10.25004/IJPSDR.2015.070101.

Issue

Section

Review Article

How to Cite

“USE OF NANOTECHNOLOGY IN THE DIAGNOSIS, PREVENTION AND THERAPY OF CANCER”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 7, no. 1, Jan. 2015, pp. 01-07, https://doi.org/10.25004/IJPSDR.2015.070101.