Clerodendrum infortunatum Attenuates Pancreatic Oxidative Stress and Dysregulated Carbohydrate Metabolism in Streptozotocin-Induced Experimental Diabetes
Abstract
The prevalence of diabetes mellitus is increasing at an alarming rate and is gravely troubling human health and quality of life. Side effects of synthetic hypoglycemic agents have led to investigations on alternative sources such as herbal drugs in treating diabetes. Anti-diabetic properties of Clerodendrum infortunatum in streptozotocin-induced experimental diabetes were evaluated and compared with the standard anti-diabetic drug glibenclamide. Aqueous extract of C. infortunatum on carbohydrate metabolism revealed its hypoglycemic effect in diabetic conditions. Furthermore, it could significantly modulate insulin secretion, glycolysis, gluconeogenesis and glycogen metabolism for effective glucose homeostasis. Notably, the drug could accelerate the activities of major antioxidant enzymes and reduce the content of lipid peroxidation products in the pancreas. The study proves the efficacy of C. infortunatum as a potent source of phytochemicals in ameliorating diabetic complications and suggests the medicinal plant as a nutraceutical agent.
Keywords:
Diabetes mellitus, Clerodendrum infortunatum, carbohydrate metabolism, lipid peroxidation, antioxidant enzymesDOI
https://doi.org/10.25004/IJPSDR.2023.150302References
Umar A, Ahmed QU, Muhammad BY, Dogarai BB , Soad SZ. Anti-hyperglycemic activity of the leaves of Tetracera scandens Linn. Merr.(Dilleniaceae) in alloxan induced diabetic rats: J. Ethnopharmacol. 2010; 131(1):140-145.
Firdous SM.Phytochemicals for treatment of diabetes:EXCLI J.2014; 13:451-453.
Wu C, Li Y, Chen Y, Lao X, Sheng L, Dai R, Meng W , Deng Y. Hypoglycemic effect of Belamcandachinensis leaf extract in normal and STZ-induced diabetic rats and its potential active faction:Phytomedicine.2011; 18(4):292-297.
Hunt JV, Dean RT , Wolff SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem. 1988; 256(1):205-212.
Jaganjac M, Tirosh O, Cohen G, Sasson S ,Zarkovic N. Reactive aldehydes–second messengers of free radicals in diabetes mellitus. Free Radic. Res. 2013; 47(1):39-48.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. J. Diabetes.2005; 54(6):1615-1625.
Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T. Oxidative damage to DNA in diabetes mellitus.Lancet.1996; 347(8999):444-445.
Leinonen J, Lehtimäki T, Toyokuni S, Okada K, Tanaka T, Hiai H, Ochi H, Laippala P, Rantalaiho V, Wirta O , Pasternack A. New biomarker evidence of oxidative DNA damage in patients with non-insulin-dependent diabetes mellitus.FEBS Lett.1997; 417(1):150-152
Baynes JW , Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm.J. Diabetes.1999; 48(1):1-9.
Kim SH, Hyun SH , Choung SY. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice.J. Ethnopharmacol. 2006; 104(1-2):119-123.
Vishwakarma SL, Rakesh S, Rajani M , Goyal RK. Evaluation of effect of aqueous extract of Enicostemmalittorale Blume in streptozotocin-induced type 1 diabetic rats.Indian J. Exp. Biol.2010; 48(1):26-30.
Mellitus D. Diagnosis and classification of diabetes mellitus.Diabetes care. 2005; 28(1):537-542.
Kaushik G, Satya S, Khandelwal RK , Naik SN. Commonly consumed Indian plant food materials in the management of diabetes mellitus.Diabetes Metab Syndr. 2010;4(1):21-40.
Singhmura S. A comprehensive overview of a traditional medicinal herb: Clerodendruminfortunatum Linn.J. pharm. sci. innov. 2016; 5(3):80-84.
Lal RH, Jyothilakshmi M, Latha MS. Isolation and quantification of tannins from the root bark of Clerodendrum infortunatum Linn. and assesmant of their antioxidant and antiproliferative effect on HCT-15 cells. Int J Pharm Res Sci. 2015;7:170-175.
Devi RK, Kumar PS. Antimicrobial, antifungal and antidiabetic properties of Clerodendrum infortunatum. Int J Pharma Bio Sci. 2015;6(1):1281-1291.
Ghosh G, Sahoo S, Das D, Dubey D, Padhy RN. Antibacterial and antioxidant activities of methanol extract and fractions of Clerodendrum viscosum Vent. leaves. Indian J Nat Prod Resour 2014; 5(2):134-142
Bhatnagar S, Pattanaik SR. Comparative analysis of cytotoxic and antioxidant activities of leaf and bark extracts of Clerodenrum viscosum and Clerodendrum phlomidis. Int J Biomed Adv Res 2012; 3(5):285-290
Gouthamchandra K, Mahmood R, Manjunatha H. Free radical scavenging, antioxidant enzymes and wound healing activities of leaves extracts from Clerodendrum infortunatum L. Environ Toxicol Pharmacol 2010; 30(1):11-18.
Modi AJ, Khadabadi SS, Deore SL, Kubde MS. Antioxidant effects of leaves of Clerodendrum infortunatum (Linn.). Int J Pharm Sci Res 2010; 1(4):67-72. 129.
Dey P, Chaudhuri D, Tamang S, Chaudhuri TK, Mandal N. In vitro antioxidant and free radical scavenging potential of Clerodendrum viscosum. Int J Pharm Bio Sci 2012; 3(3):454- 471.
Sarkar PK, Sarker UK, Farhana F, Ali MM, Islam MA, Haque MA, Ishigami K, Rokeya B, Roy B. Isolation and characterization of anti-diabetic compound from Clerodendrum infortunatum L. leaves. S. Afr. J. Bot. 2021 Nov 1;142:380-90.
Das S, Bhattacharya S, Prasanna A, Suresh Kumar RB, Pramanik G, Haldar PK. Preclinical evaluation of antihyperglycemic activity of Clerodendrum infortunatum leaf against streptozotocin-induced diabetic rats. Diabetes Therapy. 2011 May;2:92-100.
Kalita P, Chakraborty A. Effect of Clerodendrum infortunatum on testicular tissue in streptozotocine induced diabetic rats. Int J Pharm Sci Res 2015; 6(4):1650-1655.
Pillai JS, Ratheesh R, Nair KP, Sanalkumar MG, Thomson RJ. Evaluation of the anti-diabetic potential of aqueous extract of Clerodendrum infortunatum L. in vivo in streptozotocin-induced diabetic Wistar rats. Plant Science Today. 2019;6(1):1-7.
Pillai SS, Mini S. Hibiscus rosa sinensis Linn. Petals Modulates Glycogen Metabolism and Glucose Homeostasis Signalling Pathway in Streptozotocin-Induced Experimental Diabetes. Plant Foods Hum Nutr. 2016;71(1):42-8.
Lekshmi RK, Sreekutty MS, Mini S. The regulatory effects of Cissus quadrangularis on some enzymes involved in carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm Biol. 2015;53(8):1194-200.
Ramu R, Shirahatti PS, Nayakavadi S, R V, Zameer F, Dhananjaya BL, Prasad Mn N. The effect of a plant extract enriched in stigmasterol and β-sitosterol on glycaemic status and glucose metabolism in alloxan-induced diabetic rats. Food Funct. 2016;7(9):3999-4011.
Duman KE, Dogan A, Kaptaner B. Ameliorative role of Cyanus depressus (M.Bieb.) Soják plant extract against diabetes-associated oxidative-stress-induced liver, kidney, and pancreas damage in rats. J Food Biochem. 2022;46(10):e14314.
Balasubramanian T, Chatterjee TK, Senthilkumar GP, Mani T. Effect of potent ethyl acetate fraction of Stereospermum suaveolens extract in streptozotocin-induced diabetic rats. ScientificWorldJournal. 2012;2012:413196.
Huggett AS , Nixoh DA. Use of glucose oxidase, peroxidase, and O-dianisidine in determination of blood and urinary glucose.Lancet. 1957; 273(6991):368-370.
Malcovati M , Valentini G. AMP-and fructose 1, 6-bisphosphate-activated pyruvate kinases from Escherichia coli, Methods in Enzymology. 1982; 90:170-179.
Crane RK , Sols A. The association of hexokinase with particulate fractions of brain and other tissue homogenates.J. Biol. Chem. 1953; 203(1):273-292.
Carroll NV, Longley RW ,Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent.J. Biol. Chem. 1956; 220(2):583-593.
Najjar V. Phosphoglucomutase from Muscle in Methods in Enzymology. S Colowick and O Kaplan Academic PressNew York,1955.
Sutherland EW , Wosilait WD. Inactivation and activation of liver phosphorylase. Nature. 1955; 175(4447):169-170.
Maehly AC , Chance B. The assay of catalases and peroxidases.Methods Biochem. Anal. 1954; 1:357-424.
Kakkar P, Das B , Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys. 1984;21(2):130-132.
Agerguard N ,Jensen PT. Procedure for blood glutathione peroxidase determination in cattle and swine. Acta Vet. Scand.1982; 23(4):515-527.
Goldberg DM , Spooner RJ. Assay of Glutathione Reductase. In: Bergmeyen, H.V., Ed., Meth. Enzymol. 3rd Edition. Verlog Chemie; Deerfiled Beach, 1983.
Patterson JW , Lazarow A. Determination of glutathione.Methods Biochem. Anal. 1955; 2:259-278
Ohkawa H, Ohishi N ,Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.Anal. Biochem.1979; 95(2):351-358.
Buege JA , Aust SD. Microsomal lipid peroxidation. Meth. Enzymol. 1978;52:302-310.
Nayak Y, Hillemane V, Daroji VK, Jayashree BS , Unnikrishnan MK.Antidiabetic activity of benzopyrone analogues in nicotinamide-streptozotocin induced type 2 diabetes in rats.Sci. World J.2014.
Disbrey BD ,Rack JH.Book of histological laboratory methods. Harcourt Brace/Churchill Livingstone; London, 1970.
Pullen TJ , Rutter GA.When less is more: the forbidden fruits of gene repression in the adult β cell.Diabetes Obes. Metab.2013;15(6):503-512.
Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald MJ ,Wollheim CB. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing.J. Biol. Chem. 1994; 269 (7): 4895-4902.
Dunning BE , Gerich JE. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications.Endocr. Rev.2007; 28(3):253-283
Vestergaard H. Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism.Dan. Med. Bull. 1999;46(1):13-34.
Wasserman DH. Four grams of glucose.Am. J. Physiol. Endocrinol. 2009;296(1):E11-21.
DeFronzo RA , Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabete.Diabetes care.2009;32(2):S157-163.
Beck-Nielsen H, Vaag A, Damsbo P, Handberg A, Nielsen OH, Henriksen JE , Renn PT. Insulin resistance in skeletal muscles in patients with NIDDM.Diabetes Care. 1992; 15(3):418-429.
Bogardus C, Lillioja S, Stone K , Mott D. Correlation between muscle glycogen synthase activity and in vivo insulin action in man.J. Clin. Investig. 1984; 73(4):1185-1190.
Greenberg CC, Jurczak MJ, Danos AM , Brady MJ. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways.Am. J. Physiol. Endocrinol. 2006;291(1):E1-8.
Czech MP. Insulin action and resistance in obesity and type 2 diabetes.Nat. Med. 2017; 23(7):804-814.
Kakkar P, Das B , Viswanathan PN. A modified spectrophotometric assay of superoxide dismutase.Indian J. Biochem. Biophys. 1984; 21(2):130-132.
Helen RL, Jayesh K, Syama S, Latha MS. Secondary metabolites from Clerodendrum Infortunatum L.: their bioactivities and health benefits. In Health Benefits of Secondary Phytocompounds from Plant and Marine Sources. Apple Academic Press. 2021: (pp. 39-60).
Wang JH, Luan F, He XD, Wang Y, Li MX. Traditional uses and pharmacological properties of Clerodendrum phytochemicals. Journal of traditional and complementary medicine. 2018: 8(1), 24-38.
Rhoades RA ,Bell DR. Medical physiology: principles for clinical medicine. 3rd edition. Lippincott Williams & Wilkins Philadelphia , 2009.
Ghosh A, Shieh JJ, Pan CJ, Sun MS , Chou JY. The catalytic center of glucose-6-phosphatase: His176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis.J. Biol. Chem. 2002; 277(36):32837-32842.
Marcus F , Harrsch PB. Amino acid sequence of spinach chloroplast fructose-1, 6-bisphosphatase.Arch. Biochem. Biophys.1990; 279(1):151-157.
Makoff RK, Brown J, Mullen Y , Clark WR. Normalization of six key hepatic enzymes after fetal pancreas transplantation in diabetic rats.Diabetes. 1983; 32(8):730-733.
Kar P, Goyal AK, Das AP, Sen A. Antioxidant and pharmaceutical potential of Clerodendrum L.: An overview. International Journal of Green Pharmacy.2014: 8(4).
Brownlee M. Biochemistry and molecular cell biology of diabetic complications.Nature. 2001; 414(6865):813-820.
Baynes JW. Role of oxidative stress in development of complications in diabetes.Diabetes.1991; 40(4):405-412.
Maritim AC, Sanders A , Watkins Iii JB. Diabetes, oxidative stress, and antioxidants: A review.J. Biochem. Mol. Toxicol. 2003;17(1):24-38.
Gepts W, Lecompte PM. The pancreatic islets in diabetes. Am J Med. 1981;70(1):105-15.
Nurdiana S, Goh YM, Ahmad H, Dom SM, Syimal’ain Azmi N, Noor Mohamad Zin NS, Ebrahimi M. Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complement Altern. Med.. 2017;17(1):1-7.
Abunasef SK, Amin HA, Abdel-Hamid GA. A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia histochemica et cytobiologica. 2014;52(1):42-50.
Amin A, Lotfy M, Mahmoud-Ghoneim D, Adeghate E, Al-Akhras MA, Al-Saadi M, Al-Rahmoun S, Hameed R. Pancreas-protective effects of chlorella in STZ-induced diabetic animal model: insights into the mechanism. Journal of Diabetes Mellitus. 2011 Aug 31;1(03):36.
Published

