Computer-Assisted Design of benzoisoxazol derivatives inhibitors of Bromodomain-containing protein 4 (BRD4) with Favorable Pharmacokinetic Profile
Abstract
We performed a Relation Computed-Aided design based on the structure of benzo[d]isoxazol derivatives inhibitors (BDIO) derivatives, new potent inhibitors of the BRD4 protein. By using in situ modifications of the three Dimensional (3D) models of BRD4-BDIOx complex (Protein Data Bank (PDB) entry code: 5Y8Z) were prepared for the training and validation sets compounds of 29 BDIOx with observed inhibitory potencies (). We first built a Quantitative Structure Activity Relationship (QSAR) model in the gas phase, linearly correlating the calculated enthalpies of the BRD4-BDIOx complex formation with ( ; = 0,80) first and then a superior QSAR model was brought forth, correlating computed relative Gibbs’ free energies of complexation and ( = -0.1205 + 6.9374 ; = 0.96) which was then validated by a 3D-QSAR pharmacophore generation model (PH4) ( = 0.996 + 0.0554 ; = 0.95). The structural information of the active conformation of the training set BDIOs from the models guided us in the design of a virtual combinatorial library (VCL) of 99 225 analogs. We then filtered the VCL by applying Lipinski’s rule-of-five, in order to identify new BDIOs drug likely analogs. The Pharmacophore (PH4)-based screening retained 106 new and potent BDIOs with predicted inhibitory potencies up to 158 times more active than the most active traing set BDIO1 ( ). Finally, the predicted pharmacokinetic profiles of the best potent of these new analogs ( ) were compared to current orally administered anticancer drugs. This computational approach, which combines molecular mechanics and the Poisson–Boltzmann (PB) implicit solvation theory, the pharmacophore model, the analysis of BRD4-BDIOs interaction energies, the in silico screening of VCL compounds, and the inference of ADME properties resulted in a set of new suggested BRD4 inhibitors for the fight against CRPC.
Keywords:
ADME properties prediction, Bromodomain-containing protein 4 (BRD4), In silico screening, QSAR models, combinatorial library, Castration-Resistant Prostate Cancer, inhibitors, Benzo[d]isoxazole, pharmacophore modelDOI
https://doi.org/10.25004/IJPSDR.2023.150514References
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh J W, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012.Eur. J. Cancer 2013; 49: 1374−1403.
Siegel R, Ma J M, Zou Z H, Jemal A. Cancer statistics, 2014. Ca-Cancer J. Clin. 2014; 64: 9−29.
Torre L A, Bray F, Siegel R L, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. Ca-Cancer J. Clin. 2015; 65: 87−108.
Karantanos T, Corn PG, Thompson TC. Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32:5501–11.
Hotte SJ, Saad F. Current management of castrate-resistant prostate cancer. Curr Oncol 2010;17 Suppl 2: S72–9.
Watson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015; 15: 701–11.
Chandrasekar T, Yang JC, Gao AC, Evans CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2015; 4: 365–80.
Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clin Adv Hematol Oncol 2013; 11:14–23.
Cattrini C, Zanardi E, Vallome G, Cavo A, Cerbone L, Di Meglio A, et al. Targeting androgen-independent pathways: new chances for patients with prostate cancer? Crit Rev Oncol Hematol 2017; 118:42–53.
Antonarakis E S, Lu C, Wang H, Luber B, Nakazawa M, Roeser J C, Chen Y, Mohammad T A, Chen, Y, Fedor H L, Lotan T L, Zheng Q, De Marzo A M, Isaacs J T, Isaacs W B, Nadal R, Paller C J, Denmeade S R, Carducci M A, Eisenberger M A, Luo J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 2014; 371: 1028−1038.
Coleman D J, Van Hook K, King C J, Schwartzman J, Lisac R, Urrutia J, Sehrawat A, Woodward J, Wang N J, Gulati R, Thomas G V, Beer T M, Gleave M, Korkola J E, Gao L N, Heiser L M, Alumkal J J. Cellular androgen content influence senzalutamide agonism of F877L mutant androgen receptor. Oncotarget 2016; 7:40690−40703.
Denis GV, Green MR. A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Dev 1996; 10:261–71.
Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV. The double bromodomain protein BRD2 promotes B cell expansion and mitogenesis. J Leukoc Biol 2014; 95:451–60.
Nicodeme E, Jeffrey K L, Schaefer U, Beinke S, Dewell S, Chung C W, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice C M, Lora J M, Prinjha R K, Lee K, Tarakhovsky A. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468: 1119−1123.
Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith W B, Fedorov O, Morse E M, Keates T, Hickman T T, Felletar I, Philpott M, Munro S, McKeown M R, Wang Y, Christie A L, West N, Cameron M J, Schwartz B, Heightman T D, La Thangue N, French C A, Wiest O, Kung A L, Knapp S, Bradner J E. Selective inhibition of BET bromodomains. Nature 2010; 468: 1067−1073.
Wyce A, Degenhardt Y, Bai Y C, Le B C, Korenchuk S, Crouthamel M C, McHugh C F, Vessella R, Creasy C L, Tummino P J, Barbash O. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget 2013; 4: 2419−2429.
Chaidos A, Caputo V, Gouvedenou K, Liu B, Marigo I, Chaudhry M S, Rotolo A, Tough D F, Smithers N N, Bassil A K, Chapman T D, Harker N R, Barbash O, Tummino P, Al- Mahdi N, Haynes A C, Cutler L, Le B, Rahemtulla A, Roberts I, Kleijnen M, Witherington J J, Parr N J Prinjha R K, Karadimitris A. Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 2014 ; 123 : 697−705.
Gao Z, Yuan T, Zhou X, Ni P, Sun G, Li P, et al. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biol Ther 2018; 19:407–15.
Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478:529–33.
Garcia PL, Miller AL, Kreitzburg KM, Council LN, Gamblin TL, Christein JD, et al. The BET bromodomain inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in patient-derived xenograft models. Oncogene 2016; 35:833–45.
Wyce A, Degenhardt Y, Bai Y, Le B, Korenchuk S, Crouthame MC, et al. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget 2013; 4:2419–29.
Raina K, Lu J, Qian Y, Altieri M, Gordon D, Rossi AM, et al. PROTACinduced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2016; 113:7124–9.
Doroshow DB, Eder JP, LoRusso PM. BET inhibitors: a novel epigenetic approach. Ann Oncol 2017; 28:1776–87.
Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1. J Leukoc Biol 2012; 92:1147–54.
Andrieu GP, Denis GV. BET proteins exhibit transcriptional and functional opposition in the epithelial-to-mesenchymal transition. Mol Cancer Res 2018; 16:580–6.
Baud MGJ, Lin-Shiao E, Cardote T, Tallant C, Pschibul A, Chan KH, et al. Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science 2014; 346: 638–41.
Seal J, Lamotte Y, Donche F, Bouillot A, Mirguet O, Gellibert F, Nicodeme E, Krysa G, Kirilovsky J, Beinke S, McCleary S, Rioja I, Bamborough P, Chung C W, Gordon L, Lewis T, Walker A L, Cutler L, Lugo D, Wilson D M, Witherington J, Lee K, Prinjha R K. Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of IBET151 (GSK1210151A). Bioorg. Med. Chem. Lett. 2012; 22: 2968−2972.
Zhang M, Zhang Y, Song M, Xue X, Wang J, Wang C, Zhang C, Li C, Xiang Q, Zou L, Wu X, Wu C, Dong B, Xue W, Zhou Y, Chen H, Wu D, Ding K and Xu Y. Structure-Based Discovery and Optimization of Benzo[d]isoxazole Derivatives as Potent and Selective BET Inhibitors for Potential Treatment of Castration-Resistant Prostate Cancer (CRPC) J. Med. Chem. 2018; 61: 3037-3058 DOI: 10.1021/acs.jmedchem.8b00103
Xu Y, Zhang M, Xue X, Zhang Y, Liu Z. Preparation of Benzo[d]isoxazole Compounds as Inhibitors of BET. Patent CN 105085427, Nov 25, 2015.
Discovery Studio Molecular Modeling and Simulation Program. v 2.5. San Diego: Accelrys, Incorp; 2009.
Insight-II and Discover Molecular Modeling and Simulation Package, version 2005; Accelrys: San Diego, CA, USA, 2005.
N'Guessan H, Megnassan E. In silico design of phosphonic arginine and hydroxamic acid inhibitors of Plasmodium falciparum M17 leucyl aminopeptidase with favorable profile. Journal of Drug Design and Medicinal Chemistry. 2017; 3:86-113. Available:doi:10.11648/j.jddmc.20170306.13. View Article
Dali B, Keita M, Megnassan E, Frecer V, Miertus S. Insight into selectivity of peptidomimetic inhibitors with modified statine core for plasmepsin II of plasmodium falciparum over human cathepsin D. Chemical Biology & Drug Design. 2012; 79:411-430. PMid:22129033. View Article PubMed/NCBI.
Eknamkul W, Umehara K, Monthakantirat O, Toth R, Frecer V, Knapic L, et al. QSAR study of natural estrogen-like isoflavonoids and diphenolics from Thai medicinal plants. Journal of Molecular Graphics and Modelling. 2011; 29:784-794. PMid:21334935. View Article PubMed/NCBI.
Esmel A, Keita M, Megnassan E, Toï B, Frecer V, Miertus S. Insight into binding mode of nitrile inhibitors of Plasmodium falciparum Falcipain-3, QSAR and Pharmacophore models, virtual design of new analogues with favorable pharmacokinetic profiles. Journal of Computational Chemistry & Molecular Modeling. 2017; 2:103-124.
Frecer V, Berti F, Benedetti F, Miertus S. Design of peptidomimetic inhibitors of aspartic protease of HIV-1 containing -PheΨPro- core and displaying favorable ADME-related properties. Journal of Molecular Graphics and Modelling. 2008; 27:376-387. PMid:18678515. View Article PubMed/NCBI.
Frecer V, Burello E, Miertus S. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1. Bioorganic & Medicinal Chemistry. 2005;13:5492-5501 PMid:16054372. View Article PubMed/NCBI
Frecer V, Megnassan E, Miertus S. Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. European Journal of Medicinal Chemistry. 2009; 44:3009-3019.PMid:19217192. View Article PubMed/NCBI
Frecer V, Miertus S, Tossi A, Romeo D. Rational design of inhibitors for drug resistant HIV-1 aspartic protease mutants. Drug design and discovery. 1998; 15:211-231.
Megnassan E, Keita M, Bieri C, Esmel A, Frecer V, Miertus S. Design of novel dihydroxynaphthoic acid inhibitors of Plasmodium falciparum lactate dehydrogenase. Medicinal Chemistry. 2012; 8:970-984. PMid:22741776 View Article PubMed/NCBI
Owono LC, Keita M, Megnassan E, Frecer V, Miertus S. Design of thymidine analogues targeting thymidilate kinase of Mycobacterium tuberculosis. Tuberculosis Research and Treatment. 2013; 2013: 670836. Available:doi:10.1155/2013/670836. PMid:23634301 View Article PubMed/NCBI
Owono Owono LC, Ntie-Kang F, Keita M, Megnassan E, Frecer V, Miertus S. Virtually designed triclosan-based inhibitors of Enoyl-Acyl carrier protein reductase of Mycobacterium tuberculosis and of Plasmodium falciparum. Molecular Informatics. 2015; 34:292-307. Available: doi: 10.1002/ minf.201400141. PMid:27490275 View Article PubMed/NCBI
Bieri C, Esmel A, Keita M, Owono L C O, Dali B, Megnassan E, Miertus S, Frecer, V. Structure-Based Design and Pharmacophore-Based Virtual Screening of Combinatorial Library of Triclosan Analogues Active against Enoyl-Acyl Carrier Protein Reductase of Plasmodium falciparum with nFavourable ADME Profiles. Int. J. Mol. Sci. 2023; 24:6916. https://doi.org/10.3390/ijms24086916
Gilson MK, Honig B. The inclusion of electrostatic hydration energies in molecular mechanics calculations. Journal of Computer-Aided Molecular Design. 1991; 5:5-20. Available: doi: 10.1007/BF00173467. PMid:2072125 View Article PubMed/NCBI
Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. Journal of Computational Chemistry. 2002; 23:128-137. PMid:11913378 View Article PubMed/NCBI
Li H, Sutter J, Hoffmann R. HypoGen: an automated system for generating 3D predictive pharmacophore models. Pharmacophore perception, development, and use in drug design. 2000; 2:171.
QikProp, version 3.7, release 14, X Schrödinger, LLC. New York, NY; 2014.
Allangba K, Keita M, Kre N, Megnassan E, Frecer V, Miertus S. Virtual design of novel Plasmodium falciparum cysteine protease falcipain-2 hybrid lactone-chalcone and isatin-chalcone inhibitors probing the S2 active site pocket. J Enzyme Inhib Med Chem. 2019; 34: 547-561.
BIOVIA. Available Chemicals Directory (ACD). 2022. Available online: https://www.psds.ac.uk/acd (accessed on 11 March 2023).
Jorgensen W, Duffy E. Prediction of drug solubility from Monte Carlo simulations. Bioorganic & Medicinal Chemistry Letters. 2000; 10(11):1155-1158. 00172-4 View Article
Jorgensen W and Duffy E. Prediction of drug solubility from structure. Advanced Drug Delivery Reviews. 2002; 54(3):355–366. 00008-X View Article.
DrugBank: https://go.drugbank.com/unearth/q?searcher=drugs&query=benzoisoxazole (accessed on 08/03/23)
Published

