Computer-aided Design of New Hydroxamic Acid Derivatives Targeting the Plasmodium falciparum M17 Metallo-aminopeptidase with Favorable Pharmacokinetic Profile

Authors

  • Moussa Koné Laboratoire de Cristallographie–Physique Moléculaire, University of Cocody (now Felix Houphouët-Boigny), Abidjan, Côte d’Ivoire
  • Hermann N’Guessan Laboratory of Fundamental and Applied Physics, University of Abobo Adjamé (now Nangui Abrogoua), Côte d’Ivoire
  • Aka Joseph N'gouan Laboratoire de Cristallographie–Physique Moléculaire, University of Cocody (now Felix Houphouët-Boigny), Abidjan, Côte d’Ivoire
  • Frederica Mansilla-Koblavi Laboratoire de Cristallographie–Physique Moléculaire, University of Cocody (now Felix Houphouët-Boigny), Abidjan, Côte d’Ivoire
  • EUGENE MEGNASSAN Laboratory of Structural and Theoretical Organic Chemistry, University of Cocody (now Felix Houphouët Boigny), Côte d’Ivoire

Abstract

Through structure-based molecular design, we virtually design new subnanomolar range antimalarial, inhibitors of Plasmodium falciparum M17 aminopeptidase (PfA-M17). We developed the complexation QSAR models from hydroxamic acid derivatives (HDA). A linear correlation was established between the computed Gibbs free energies of binding (GFE: ΔΔGcom) and observed enzyme inhibition constants (Kiexp) for each training set pKiexp = , R2 = 0.97. The predictive power of the QSAR model was validated with 3D-QSAR pharmacophore generation (PH4): pKiexp = 0.707×pKipred − 2.5182, R2 = 0.89. We then conducted a study on catalytic residues to exploit the different interactions (enzyme: inhibitor). Structural information from the models guided us in designing a virtual combinatorial library (VCL) of more than 56 thousand HDAs. The PH4 screening retained 48 new and potent HDAs with predicted inhibitory potencies pKipre up to 73 times lower than that of HDA1 (pKiexp = 2.5 nM). Combining molecular modeling and PH4 in-silico screening of the VCL resulted in the proposed novel potent antimalarial agent candidates with favorable pharmacokinetic profiles.

Keywords:

Drug Design, Molecular Modelling, ADMET, QSAR Model, Pharmacophore Model, Complexation Model

DOI

https://doi.org/10.25004/IJPSDR.2023.150317

References

World Health Organization (WHO), Practical guide for treatment, severe malaria, Edn 3, 2015, pp. 83.

Uwimana A, Legrand E, Stokes BH, Ndikumana J-LM, Warsame M, Umulisa N, Ngamije D, Munyaneza T, Mazarati J-B. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat Med. 2020; 6: 1602–1608. doi: 10.1038/s41591-020-1005-2.

Zhu L, van der Pluijm R W, Kucharski M, Nayak S, Tripathi J, White N J, Day N P J, Faiz A, Phyo A P. Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response. Commun Biol. 2022; 5: 274.doi: 10.1038/s42003-022-03215-0.

World malaria report 2021. Geneva, World Health Organization, 2021, Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/handle/10665/350147

https://www.scidev.net/afrique-sub-saharienne/news/la-tritherapie-envisagee-pour-freiner-la-resistance-aux-antipaludiques/

Sallares R. Malaria and Rome: A History of Malaria in Ancient Italy, Oxford University Press: Oxford, 2002.

Chen, C. Development of antimalarial drugs and their application in China: a historical review. Infect Dis Poverty. 2014; 3: 9.

Klayman D L. Qinghaosu (artemisinin): an antimalarial drug from China. Science. 1985; 228: 1049–1055.

Ragheb D, Dalal S, Bompiani KM, Ray WK, Klemba M. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. J Biol Chem. 2011; 31: 27255–27265. doi: 10.1074/jbc.m111.225318.

Dalal S, Klemba M. Roles for Two Aminopeptidases in Vacuolar Hemoglobin Catabolism in Plasmodium falciparum. J Biol Chem. 2007; 49: 35978–35987. doi: 10.1074/jbc.M703643200.

Patrick G L. Antimalarial Agents Design and Mechanism of Action, Elsevier: Amsterdam, Netherlands, ISBN 0081012101, 9780081012109, 2020.

Ragheb D, Dalal S, Bompiani KM, Ray WK, Klemba M. Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. J Biol Chem. 2011; 31: 27255–27265. doi: 10.1074/jbc.m111.225318.

Dalal S, Klemba M. Roles for Two Aminopeptidases in Vacuolar Hemoglobin Catabolism in Plasmodium falciparum. J Biol Chem. 2007;49: 35978–35987. doi: 10.1074/jbc.M703643200.

Cunningham E, Drag M, Kafarski P, Bell A. Chemical target validation studies of aminopeptidase in malaria parasites using alpha-aminoalkylphosphonate and phosphonopeptide inhibitors. Antimicrob Agents Chemother. 2008; 9: 3221–28. doi: 10.1128/AAC.01327-07.

McGowan S, Oellig C A, Birru W A, Caradoc-Davies T, Stack C, Lowther J, Skinner- Adams T, Mucha A, Kafarski P. Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences, University of California, USA. 2010; 6: 2449–2454.

Sivaraman K K, Paiardini A, Sienczyk M, Ruggeri C, Oellig C, Dalton JP, Scammells PJ, Drag M, McGowan S. Synthesis and structure-activity relationships of phosphonic arginine mimetics as inhibitors of the M1 and M17 aminopeptidases from Plasmodium falciparum. J Med Chem. 2013; 12: 5213 – 5217. doi:.10.1021/jm4005972.

McGowan S. Working in concert: The metalloaminopeptidases from Plasmodium falciparum. Curr Opin Struct Biol. 2013; 6:828–835. doi:10.1016/j.sbi.2013.07.015.

Mucha A, Drag M, Dalton J P, Kafarski P. Metallo-aminopeptidase inhibitors. Biochimie. 2010; 11:1509–1529. doi : 10.1016/j.biochi.2010.04.026.

Velmourougane G, Harbut M B, Dalal S, McGowan S, Oellig C A, Meinhardt N, Whisstock J C, Klemba M, Greenbaum DC. Synthesis of new bestatin-based inhibitor libraries reveals a novel binding mode in the S1 pocket of the essential malaria M1 metalloaminopep-tidase. J Med Chem. 2011; 6: 1655–1666. doi: 10.1021/jm101227t.

McGowan S, Porter C J, Lowther J, Stack C M, Golding S J, Skinner-Adams T S, Trenholme K R, Teuscher F, Donnelly S M and al. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. In Proceedings of the National Academy of Sciences, USA. 2009; 8: 2537−2542.

Deprez-Poulain R, Flipo M, Piveteau C, Leroux F, Dassonneville S, Florent I, Maes L, Cos P, Deprez B. Structure-activity relationships and blood distribution of antiplasmodial aminopeptidase-1 inhibitors. J Med Chem. 2012; 24:10909−10917. doi: 10.1021/jm301506h.

Shailesh N M, Drinkwater N, Ruggeri C, Sivaraman K K, Logonathan S, Fletcher S, Drag M, Paidini A, Averg V M, Scaammells P J and Gowan M. Two-Pronged Attack: Dual Inhibition of Plasmodium falciparum M1 and M17 Metalloaminopeptidases by a Novel Series of Hydroxamic Acid-Based Inhibitors. J Med Chem. 2014;21: 9168−9183. doi: 10.1021/jm501323a.

Drinkwater N, Vinh N B, Mistry S N, Bamert R S, Ruggeri C, Holleran J P, Loganathan S, Paiardini A and Charman S A. Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. Eur J Med Chem. 2016; 110: 43–64. doi: 10.1016/j.ejmech.2016.01.015.

Vinh NB, Drinkwater N, Malcolm TR. Hydroxamic Acid Inhibitors Provide Cross-Species Inhibition of Plasmodium M1 and M17 Aminopeptidases, J Med Chem. 2019; 62: 622–640.

Insight-II. Insight-II and Discover molecular modeling and simulation package, Version 2005. San Diego, CA: Accelrys, Inc. 2005.

Discovery Studio Molecular Modeling and Simulation Program, v.2.5; Accelrys, Inc.: San Diego, CA, USA, 2009.

P. Chaquin, P. Manual of theoretical chemistry application to structure and reactivity in molecular chemistry; Ellipses: Paris, France, 2000; ISBN 2729802436.

Allangba K, Keita M, N’Guessan R K, Megnassan E, Frecer V, Miertus S. Virtual design of novel Plasmodium falciparum cysteine protease falcipain-2 hybrid lactone chalcone and isatin-chalcone inhibitors probing the lactone chalcone and isatin-chalcone inhibitors probing the S2 active site pocket. J Enz Inhib Med Chem. 2018;1:547–561. doi: 10.1080/14756366.2018.1564288.

D. Studio, «DelPhi version 4.1.1 solvation program, Accelrys» version1.7, Inc., San diego, California, 2007.

Dror O, Shulman-Peleg A, Nussinov R et al. «Predicting molecular interactions in silico: I. A guide pharmacophore identification and its applications to drug design». Curr Med Chem. 2004; 11: 71-90.

QikProp Version 3.7, Release 14. New York, NY: X Schrodinger, LLC; 2014. (n.d.)

Xu Y, Goodacre R. On splitting training and validation set: A comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J Anal Test. 2018;3: 249–262. doi: 10.1007/s41664-018-0068-2

N’Guessan H, Megnassan E. In silico design of phosphonic arginine and hydroxamic acid inhibitors of Plasmodium falciparum M17 Leucyl aminopeptidase with favorable pharmacokinetic profile. J Drug Des Med Chem. 2017; 6: 86-113. doi: 10.11648/j.jddmc.20170306.13.

Lipinski C A, Lombardo F, Dominy B W, Feeney P J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64: 4-17. doi: 10.1016/s0169-409x(00)00129-0.

Stec J, Vilchèze C, Lun S, Perryman A, Wang X, Freundlich J, Kozikowski A. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. J Med Chem. 2014; 11: 2528–2537. doi:10.1002/cmdc. 201402255

Published

30-05-2023
Statistics
Abstract Display: 442
PDF Downloads: 391
Dimension Badge

How to Cite

“Computer-Aided Design of New Hydroxamic Acid Derivatives Targeting the Plasmodium Falciparum M17 Metallo-Aminopeptidase With Favorable Pharmacokinetic Profile”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 3, May 2023, pp. 356-75, https://doi.org/10.25004/IJPSDR.2023.150317.

Issue

Section

Research Article

How to Cite

“Computer-Aided Design of New Hydroxamic Acid Derivatives Targeting the Plasmodium Falciparum M17 Metallo-Aminopeptidase With Favorable Pharmacokinetic Profile”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 3, May 2023, pp. 356-75, https://doi.org/10.25004/IJPSDR.2023.150317.