DESIGN AND COMPUTATIONAL EVALUATION OF NEW CARBAMATE DERIVATIVES FOR THE INHIBITION OF MONOACYLGLYCEROL LIPASE ENZYME BY USING DOCKING

Authors

  • Abhishek Kashyap Department of Pharmaceutical Chemistry, School of Medical and Allied Sciences, G. D. Goenka University, Sohna, India
  • Dimpy Rani Department of Pharmaceutical Chemistry, School of Medical and Allied Sciences, G. D. Goenka University, Sohna, India
  • Suresh Kumar Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Delhi, India
  • Shailendra Bhatt Department of Pharmaceutical Chemistry, School of Medical and Allied Sciences, G. D. Goenka University, Sohna, India

Abstract

Different disorders and physiological process have been found to be associated with monoacylglycerol lipase enzyme in humans, like pain, inflammation, and neurodegenerative diseases also. The enzyme is a 33 KDa in weight and a type of serine hydrolase enzyme in nature. The presence of enzyme has been reported in both central and peripheral nervous systems and has show its importance as a key signalling factor in endocannabinoid signalling network system. The enzyme has also reported as source of free fatty acid provider for the cancer cell and tumour growth and their proliferation. In proliferative cancer cells, increased the monoacylglycerol lipase activity is observed. The growth, migration and survival of cancer cells have also found to be associated with phosphatidic acid, lysophosphatidic acid, sphingosine phosphate and prostaglandin E2, which are act as signalling molecules and are found to be derived from free fatty acid. These are also found to be related to the growth, transmission and viability of cancer cells, which increases with the enzyme activity. In the present study we performing computation screening studies of newly designed monoacylglycerol inhibitors which contains carbamate features, these molecules are designed based on previously developed monoacylglycerol carbamate inhibitors.

Keywords:

Amino Acids, Arachidonic Acid, 2-Arachidonoylglycerol, Monoacylglycerol Lipase, Receptors, Enzyme, Endocannabinoid system, Monoacylglycerol lipase inhibitors.

DOI

https://doi.org/10.25004/IJPSDR.2023.150515

References

Ahamed M, Attili B, van Veghel D, Ooms M, Berben P, Celen S, Koole M, Declercq L, Savinainen JR, Laitinen JT, Verbruggen A, Bormans G. Synthesis and preclinical evaluation of [11C]MA-PB-1 for in vivo imaging of brain monoacylglycerol lipase (MAGL). Eur J Med Chem. 2017; 136:104–13.

Kokona D, Spyridakos D, Tzatzarakis M, Papadogkonaki S, Filidou E, Arvanitidis KI, Kolios G, Lamani M, Makriyannis A, Malamas MS, Thermos K. The endocannabinoid 2-arachidonoylglycerol and dual ABHD6/MAGL enzyme inhibitors display neuroprotective and anti-inflammatory actions in the in vivo retinal model of AMPA excitotoxicity. Neuropharmacology. 2021; 185:108450.

Zhu B, Connolly PJ, Zhang YM, McDonnell ME, Bian H, Lin SC, Liu L, Zhang SP, Chevalier KM, Brandt MR, Milligan CM, Flores CM, Macielag MJ. The discovery of azetidine-piperazine di-amides as potent, selective and reversible monoacylglycerol lipase (MAGL) inhibitors. Bioorganic Med Chem Lett. 2020; 30:127243.

Korhonen J, Kuusisto A, Van Bruchem J, Patel JZ, Laitinen T, Navia-Paldanius D, Laitinen JT, Savinainen JR, Parkkari T, Nevalainen TJ. Piperazine and piperidine carboxamides and carbamates as inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Bioorganic Med Chem. 2014; 22:6694–6705.

Zhu B, Connolly PJ, Zhang SP, Chevalier KM, Milligan CM, Flores CM, Macielag MJ. The discovery of diazetidinyl diamides as potent and reversible inhibitors of monoacylglycerol lipase (MAGL). Bioorganic Med Chem Lett. 2020; 30:127198.

Grimsey NL, Savinainen JR, Attili B, Ahamed M. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: new developments in therapeutic and PET imaging applications. Drug Discov Today. 2020; 25:330–43.

Gruden E, Kienzl M, Hasenoehrl C, Sarsembayeva A, Ristic D, Theresa S, Maitz K, Taschler U, Hahnefeld L, Gurke R, Thomas D, Kargl J, Schicho R. Prostaglandins , Leukotrienes and Essential Fatty Acids Tumor microenvironment-derived monoacylglycerol lipase provokes tumor-specific immune responses and lipid profiles. Prostaglandins, Leukot Essent Fat Acids. 2023; 196:102585.

Poli G, Lapillo M, Jha V, Mouawad N, Caligiuri I, Macchia M, Minutolo F, Rizzolio F, Tuccinardi T, Granchi C. Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. J Enzyme Inhib Med Chem. 2019. doi:10.1080/14756366.2019.1571271.

Tuccinardi T, Granchi C, Rizzolio F, Caligiuri I, Battistello V, Toffoli G, Minutolo F, Macchia M, Martinelli A. Identification and characterization of a new reversible MAGL inhibitor. Bioorganic Med Chem. 2014; 22:3285–91.

He Y, Gobbi LC, Herde AM, Rombach D, Ritter M, Kuhn B, Wittwer MB, Heer D, Hornsperger B, Bell C, O’Hara F, Benz J, Honer M, Keller C, Collin L, Richter H, Schibli R, Grether U, Mu L. Discovery, synthesis and evaluation of novel reversible monoacylglycerol lipase radioligands bearing a morpholine-3-one scaffold. Nucl Med Biol. 2022; 108–109:24–32.

Ahamed M, Attili B, van Veghel D, Ooms M, Berben P, Celen S, Koole M, Declercq L, Savinainen JR, Laitinen JT, Verbruggen A, Bormans G. Synthesis and preclinical evaluation of [11C]MA-PB-1 for in vivo imaging of brain monoacylglycerol lipase (MAGL). Eur J Med Chem. 2017. doi:10.1016/j.ejmech.2017.04.066.

Chen Z, Mori W, Fu H, Schafroth MA, Hatori A, Shao T, Zhang G, Van RS, Zhang Y, Hu K, Fujinaga M, Wang L, Belov V, Ogasawara D, Giffenig P, Deng X, Rong J, Yu Q, Zhang X, Papisov MI, Shao Y, Collier TL, Ma JA, Cravatt BF, Josephson L, Zhang MR, Liang SH. Design, Synthesis, and Evaluation of 18F-Labeled Monoacylglycerol Lipase Inhibitors as Novel Positron Emission Tomography Probes. J Med Chem. 2019. doi:10.1021/acs.jmedchem.9b00936.

Bononi G, Tonarini G, Poli G, Barravecchia I, Caligiuri I, Macchia M, Rizzolio F, Demontis GC, Minutolo F, Granchi C, Tuccinardi T. Monoacylglycerol lipase (MAGL) inhibitors based on a diphenylsulfide-benzoylpiperidine scaffold. Eur J Med Chem. 2021; 223:113679.

Xu J, Zheng G, Hu J, Ge W, Bradley JL, Ornato JP, Tang W. The monoacylglycerol lipase inhibitor, JZL184, has comparable effects to therapeutic hypothermia, attenuating global cerebral injury in a rat model of cardiac arrest. Biomed Pharmacother. 2022; 156:113847.

Zhang L, Butler CR, Maresca KP, Takano A, Nag S, Jia Z, Arakawa R, Piro JR, Samad T, Smith DL, Nason DM, O’Neil S, McAllister L, Schildknegt K, Trapa P, McCarthy TJ, Villalobos A, Halldin C. Identification and Development of an Irreversible Monoacylglycerol Lipase (MAGL) Positron Emission Tomography (PET) Radioligand with High Specificity. J Med Chem. 2019. doi:10.1021/acs.jmedchem.9b00847.

Mori W, Hatori A, Zhang Y, Kurihara Y, Yamasaki T, Xie L, Kumata K, Hu K, Fujinaga M, Zhang MR. Radiosynthesis and evaluation of a novel monoacylglycerol lipase radiotracer: 1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-benzyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate. Bioorganic Med Chem. 2019; 27:3568–73.

Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Ruggiero E, De Stefano L, Rizzolio F, Di Cesare Mannelli L, Ghelardini C, Chicca A, Lapillo M, Gertsch J, Manera C, Macchia M, Martinelli A, Granchi C, Minutolo F, Tuccinardi T. Discovery of 1,5-Diphenylpyrazole-3-Carboxamide Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. J Med Chem. 2018; 61:1340–54.

Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur. J. Med. Chem. 2018. doi:10.1016/j.ejmech.2018.08.028.

Afzal O, Akhtar MS, Kumar S, Ali MR, Jaggi M, Bawa S. Hit to lead optimization of a series of N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamides as monoacylglycerol lipase inhibitors with potential anticancer activity. Eur J Med Chem. 2016. doi:10.1016/j.ejmech.2016.05.038.

Scalvini L, Vacondio F, Bassi M, Pala D, Lodola A, Rivara S, Jung KM, Piomelli D, Mor M. Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL. Sci Rep. 2016; 6:1–12.

Ma M, Bai J, Ling Y, Chang W, Xie G, Li R, Wang G, Tao K. Monoacylglycerol lipase inhibitor JZL184 regulates apoptosis and migration of colorectal cancer cells. Mol Med Rep. 2016; 13:2850–56.

Lauria S, Casati S, Ciuffreda P. Synthesis and characterization of a new fluorogenic substrate for monoacylglycerol lipase and application to inhibition studies. Anal Bioanal Chem. 2015; 407:1–5.

Berdan CA, Erion KA, Burritt NE, Corkey BE, Deeney JT. Inhibition of monoacylglycerol lipase activity decreases glucose-stimulated insulin secretion in INS-1 (832/13) cells and rat islets. PLoS One. 2016; 11:e0149008.

Sherer C, Snape TJ. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem. 2015; 97:552–60.

Swain C. Open Babel Documentation. 2014.

Doganc F, Celik I, Eren G, Kaiser M, Brun R, Goker H. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. Eur J Med Chem. 2021; 221:113545.

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel. J Cheminform. 2011; 3:1–14.

Dain FA, Opo M, Rahman MM, Ahammad F, Ahmed I, Bhuiyan A, Asiri AM. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Sci Reports |. 123AD; 11:4049.

Tannas LE. System Requirements. Flat-Panel Displays CRTs. 1985;:31–53.

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000; 28:235–42.

Protein Science - 2017 - Williams - MolProbity More and better reference data for improved all‐atom structure validation.pdf. .

Bononi G, Granchi C, Lapillo M, Giannotti M, Nieri D, Fortunato S, Boustani M El, Caligiuri I, Poli G, Carlson KE, Kim SH, Macchia M, Martinelli A, Rizzolio F, Chicca A, Katzenellenbogen JA, Minutolo F, Tuccinardi T. Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. Eur J Med Chem. 2018; 157:817–36.

Riccardi L, Arencibia JM, Bono L, Armirotti A, Girotto S, De Vivo M. Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase. Biochim Biophys Acta - Mol Cell Biol Lipids. 2017; 1862:441–51.

Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity : all-atom structure validation for macromolecular crystallography . 2012;:694–701.

Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, Richardson DC. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007; 35:W375–83.

Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61:3891–98.

Allouche A. Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. J Comput Chem. 2012; 32:174–82.

Carolina A, De Sousa C, Combrinck JM, Maepa K, Egan TJ. Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. doi:10.1038/s41598-020-60221-0.

Studio 2020 BD. Dassault Systems: San Diego. CA, USA. 2020.

Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015; 58:4066–72.

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:1–13.

Afzal O, Kumar S, Kumar R, Firoz A, Jaggi M, Bawa S. Docking based virtual screening and molecular dynamics study to identify potential monoacylglycerol lipase inhibitors. Bioorganic Med Chem Lett. 2014; 24:3986–96.

Published

30-09-2023
Statistics
Abstract Display: 751
PDF Downloads: 330
Dimension Badge

How to Cite

“DESIGN AND COMPUTATIONAL EVALUATION OF NEW CARBAMATE DERIVATIVES FOR THE INHIBITION OF MONOACYLGLYCEROL LIPASE ENZYME BY USING DOCKING”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 5, Sept. 2023, pp. 665-74, https://doi.org/10.25004/IJPSDR.2023.150515.

Issue

Section

Research Article

How to Cite

“DESIGN AND COMPUTATIONAL EVALUATION OF NEW CARBAMATE DERIVATIVES FOR THE INHIBITION OF MONOACYLGLYCEROL LIPASE ENZYME BY USING DOCKING”. International Journal of Pharmaceutical Sciences and Drug Research, vol. 15, no. 5, Sept. 2023, pp. 665-74, https://doi.org/10.25004/IJPSDR.2023.150515.